Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (3): 213-219    DOI: 10.11901/1005.3093.2021.112
  研究论文 本期目录 | 过刊浏览 |
YMg-14Al-5Si合金性能的影响
范晋平(), 蒋一锋, 裴镖, 康文旭
太原理工大学材料科学与工程学院 太原 030024
Effect of Y on Properties of Mg-14Al-5Si Alloy
FAN Jinping(), JIANG Yifeng, PEI Biao, KANG Wenxu
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

范晋平, 蒋一锋, 裴镖, 康文旭. YMg-14Al-5Si合金性能的影响[J]. 材料研究学报, 2022, 36(3): 213-219.
Jinping FAN, Yifeng JIANG, Biao PEI, Wenxu KANG. Effect of Y on Properties of Mg-14Al-5Si Alloy[J]. Chinese Journal of Materials Research, 2022, 36(3): 213-219.

全文: PDF(13718 KB)   HTML
摘要: 

使用扫描电子显微镜(SEM)、能量色散光谱仪(EDS)、光学显微镜(OM)及X射线衍射仪(XRD)等手段分析了Mg-14Al-5Si合金的组织和成分,用布洛维硬度计和电子万能试验机测试了这种合金的力学性能,研究了在Mg-14Al-5Si合金中添加不同量的Y元素对其组织和力学性能的影响。结果表明:在Mg-14Al-5Si合金中分别添加0.5%、0.8%、1.0%和1.5%(质量分数,下同)的Y元素,使合金中的Mg2Si相由粗大的树枝状变为多边形和圆形,共晶β-Mg17Al12相由粗大的连续网格状变为细小的网格状和孤岛状。Y的添加量为1.0%时改性效果最佳,Mg2Si相的平均尺寸由42.21 µm减小到8.15 µm,此时合金的力学性能最佳,硬度为135 HB,抗拉强度为147 MPa,屈服强度为76 MPa,伸长率为5.04%。在Y的添加量为1.5%的合金中发现白色块状的Mg-Si-Y化合物。Y元素能促进Mg2Si相形核、抑制其各向异性生长,并在β-Mg17Al12相的生长前沿偏析形成过冷结构,抑制其生长。

关键词 金属材料Mg-14Al-5SiY微观组织力学性能    
Abstract

The effect of Y addition on the microstructure and mechanical properties of Mg-14Al-5Si alloy was investigated by means of scanning electron microscope (SEM), energy dispersive spectrometer (EDS), optical microscope (OM) and X-ray diffractometer (XRD), as well as Bloch hardness tester and electronic universal testing machine. The results show that the addition of 0.5%, 0.8%, 1.0% and 1.5% (mass fraction) Y can induce obvious changes of phases in the Mg-14Al-5Si alloy, namely, the silicide phase Mg2Si changes from coarse dendrite to polygon and round shape, and the eutectic phase β-Mg17Al12 changes from coarse continuous grid to fine grid and islets like. The alloying effect for the Y addition amount of 1.0% is the best i.e., the average size of Mg2Si reduced from 42.21 μm to 8.15 μm, the mechanical properties of the alloy also reach the best with hardness of 135HB, tensile strength of 147 MPa, yield strength of 76 MPa and elongation of 5.04% respectively. White block Mg-Si-Y compound is found in the alloy with Y1.5%. The element Y can promote the nucleation of Mg2Si and inhibit the anisotropic growth of Mg2Si. At the same time, Y segregates in the front of the growth of β-Mg17Al12 phase, forming a supercooled structure and inhibiting its growth.

Key wordsmetallic materials    Mg-14Al-5Si    Y    microstructure    mechanical property
收稿日期: 2021-01-24     
ZTFLH:  TG430.4020  
基金资助:太原理工大学技术开发项目(RH19200007)
作者简介: 范晋平,女,1974年生,博士
AlloySiYAlFeMg
Mg-14Al-5Si5.022-14.0140.011Bal.
Mg-14Al-5Si-0.5Y4.9840.50413.9910.010Bal.
Mg-14Al-5Si-0.8Y5.0130.81214.1160.008Bal.
Mg-14Al-5Si-1Y5.0311.10414.0150.010Bal.
Mg-14Al-5Si-1.5Y4.9961.54914.0210.009Bal.
表1  Y变质Mg-14Al-5Si合金的化学成分
图1  Mg-14Al -5Si合金的XRD谱
图2  Mg-14Al-5Si合金的光学显微照片
图3  1.5%Y变质Mg-14Al-5Si合金的XRD谱
图4  Y添加量不同的Mg-14Al-5Si合金的光学显微照片
图5  Y添加量不同的合金中Mg2Si相颗粒的平均尺寸
图6  1.5%Y变质合金的SEM照片和A处白色块状相的EDS分析
图7  Y添加量不同的Mg-14Al -5Si合金的硬度
图8  Y添加量不同的Mg-14Al-5Si合金的拉伸曲线
Content/%σb /MPaσ0.2/MPaδ/%
0115581.33
0.5132691.34
0.8160792.90
1.0147765.04
1.5129651.88
表2  Y添加量不同的Mg-14Al -5Si合金的抗拉强度(σb)、屈服强度(σ0.2)和伸长率(δ)
图9  Y添加量不同的Mg-14Al-5Si合金拉伸断口的SEM照片
1 Han B Q, Dunand D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids [J]. Mater. Sci. Eng., 2000, 277A: 297
2 Kondori B, Mahmudi R. Effect of Ca additions on the microstructure and creep properties of a cast Mg-Al-Mn magnesium alloy [J]. Mater. Sci. Eng., 2017, 700A: 438
3 Li D, Chen Y L, Hu S P, et al. Effect of Gd addition on microstructure and mechanical properties of wrought AZ31 magnesium alloys [J]. Chin. J. Mater. Res., 2014, 28: 579
3 李 栋, 陈雨来, 胡水平 等. 添加Gd对变形镁合金AZ31组织与力学性能的影响 [J]. 材料研究学报, 2014, 28: 579
4 Fan J P, Xu B S, Wang S B, et al. Effects of Y on elevated temperature mechanical properties of Mg-8Al-2Sr alloy [J]. Chin. J. Mater. Res., 2012, 26: 132
4 范晋平, 许并社, 王社斌 等. Y对Mg-8Al-2Sr镁合金高温力学性能的影响 [J]. 材料研究学报, 2012, 26: 132
5 Chen Z H. Heat Resistant Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2007
5 陈振华. 耐热镁合金 [M]. 北京: 化学工业出版社, 2007
6 Chen K, Li Z Q. Effect of co-modification by Ba and Sb on the microstructure of Mg2Si/Mg-Zn-Si composite and mechanism [J]. J. Alloys Compd., 2014, 592: 196
7 Lü Y Z, Wang Q D, Zeng X Q, et al. Effects of silicon on microstructure, fluidity, mechanical properties, and fracture behaviour of Mg-6Al alloy [J]. Mater. Sci. Technol., 2001, 17: 207
8 Zhang E L, Wei X S, Yang L, et al. Effect of Zn on the microstructure and mechanical properties of Mg-Si alloy [J]. Mater. Sci. Eng., 2010, 527A: 3195
9 Li C, Wu Y Y, Li H, et al. Morphological evolution and growth mechanism of primary Mg2Si phase in Al-Mg2Si alloys [J]. Acta Mater., 2011, 59: 1058
10 Ye L Y, Hu J L, Tang C P, et al. Modification of Mg2Si in Mg-Si alloys with gadolinium [J]. Mater. Charact., 2013, 79: 1
11 Zhang J, Fan Z, Wang Y Q, et al. Microstructural development of Al-15wt.%Mg2Si in situ composite with mischmetal addition [J]. Mater. Sci. Eng., 2000, 281A: 104
12 Ye H Z, Liu X Y. Review of recent studies in magnesium matrix composites [J]. J. Mater. Sci., 2004, 39: 6153
13 Ghandvar H, Idris M H, Ahmad N. Effect of hot extrusion on microstructural evolution and tensile properties of Al-15%Mg2Si-xGd in-situ composites [J]. J. Alloys Compd., 2018, 751: 370
14 Lotfpour M, Emamy M, Allameh S H, et al. Effect of hot extrusion on microstructure and tensile properties of Ca modified Mg-Mg2Si composite [J]. Proced. Mater. Sci., 2015, 11: 38
15 Qin Q D, Zhao Y G. Nonfaceted growth of intermetallic Mg2Si in Al melt during rapid solidification [J]. J. Alloys Compd., 2008, 462: L28
16 Kaygısız Y, Maraşlı N. Hardness and electrical resistivity of Al-13wt% Mg2Si pseudoeutectic alloy [J]. Russ. J. Non-Ferrous Met., 2017, 58: 15
17 Mirshahi F, Meratian M, Panjepour M. Microstructural and mechanical behavior of Mg/Mg2Si composite fabricated by a directional solidification system [J]. Mater. Sci. Eng., 2011, 528A: 8319
18 Wu G L, Fan J P, Jiang Y F, et al. Effect of melt superheating treatment on microstructure and properties of Mg-5Si alloy [J]. Nonferrous Met. Eng., 2020, 10(10): 40
18 武改林, 范晋平, 蒋一锋 等. 熔体过热处理对Mg-5Si合金组织与性能的影响 [J]. 有色金属工程, 2020, 10(10): 40
19 Lu L, Thong K K, Gupta M. Mg-based composite reinforced by Mg2Si [J]. Compos. Sci. Technol., 2003, 63: 627
20 Ma B X, Wang L P, Guo E J. Modification effect of lanthanum on primary phase Mg2Si in Mg-Si alloys [J]. J. Chin. Rare Earth Soc., 2008, 26: 87
20 马宝霞, 王丽萍, 郭二军. 镧对Mg-Si合金中Mg2Si相变质的影响 [J]. 中国稀土学报, 2008, 26: 87
21 Fan J P, Wang H, Wu G L, et al. Modifying effect of Ce addition on primary Mg2Si phase in Mg-5Si alloy [J]. Chin. J. Mater. Res., 2019, 33: 683
21 范晋平, 王 浩, 武改林 等. Ce对Mg-5Si合金中初生Mg2Si相变质的影响 [J]. 材料研究学报, 2019, 33: 683
22 Zhang J, Fan Z, Wang Y Q, et al. Microstructural development of Al-15wt.%Mg2Si in situ composite with mischmetal addition [J]. Mater. Sci. Eng., 2000, 281A: 104
23 Zhang J, Fan Z, Wang Y, et al. Microstructural refinement in Al-Mg2Si in situ composites [J]. J. Mater. Sci. Lett., 1999, 18: 783
24 Liao H C, Sun Y, Sun G X. Restraining effect of strontium on the crystallization of Mg2Si phase during solidification in Al-Si-Mg casting alloys and mechanisms [J]. Mater. Sci. Eng., 2003, 358A: 164
25 Tong W H, Liu Y L, Liu Y K, et al. Effects of Ca-Y compound modification on microstructure and properties of Mg-Si-Zn alloy with high Si content [J]. Chin. J. Nonferrous Met., 2019, 29: 27
25 童文辉, 刘雨林, 刘玉坤 等. Ca-Y复合变质对高硅Mg-Si-Zn合金组织与性能的影响 [J]. 中国有色金属学报, 2019, 29: 27
26 Zhang Q, Wang Y, Li P. Mechanical properties and strengthening mechanism of as-cast Mg-Y alloys [J]. Trans. Mater. Heat Treat., 2018, 39(12): 8
26 张 清, 王 莹, 李 萍. 铸态Mg-Y合金的力学性能和强化机制 [J]. 材料热处理学报, 2018, 39(12): 8
27 Zhang Z M, Xu C J, Jia S Z, et al. Microstructure and mechanical properties of Mg-Al-Si alloy with high content of silicon [J]. Trans. Mater. Heat Treat., 2009, 30(5): 140
27 张忠明, 徐春杰, 贾树卓 等. 高硅含量镁铝硅合金的组织与力学性能 [J]. 材料热处理学报, 2009, 30(5): 140
28 Jiang Q C, Wang H Y, Wang Y, et al. Modification of Mg2Si in Mg–Si alloys with yttrium [J]. Mater. Sci. Eng., 2005, 392A: 130
29 Cui Z Q, Tan Y C. Metallurgy and Heat Treatment [M]. 2nd ed. Beijing: China Machine Press, 2011
29 崔忠圻, 覃耀春. 金属学与热处理2版 [M]. 北京: 机械工业出版社, 2011
30 Zhang E L, Wei X S, Yang L, et al. Effect of Zn on the microstructure and mechanical properties of Mg-Si alloy [J]. Mater. Sci. Eng., 2010, 527A: 3195
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.