Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (3): 206-212    DOI: 10.11901/1005.3093.2021.265
  研究论文 本期目录 | 过刊浏览 |
基于Si掺杂增强光吸收提升Li2SnO3 光催化降解四环素的研究
李园园1(), 曾寒露1, 蒲红争1, 蒋明珠1, 王仲明1, 杨怡萌1, 公祥南2
1.重庆第二师范学院生物与化学工程学院 重庆 400067
2.重庆大学分析测试中心 重庆 401331
Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3
LI Yuanyuan1(), ZENG Hanlu1, PU Hongzheng1, JIANG Mingzhu1, WANG Zhongming1, YANG Yimeng1, GONG Xiangnan2
1.College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
2.Analytical and Testing Center of Chongqing University, Chongqing 401331, China
引用本文:

李园园, 曾寒露, 蒲红争, 蒋明珠, 王仲明, 杨怡萌, 公祥南. 基于Si掺杂增强光吸收提升Li2SnO3 光催化降解四环素的研究[J]. 材料研究学报, 2022, 36(3): 206-212.
Yuanyuan LI, Hanlu ZENG, Hongzheng PU, Mingzhu JIANG, Zhongming WANG, Yimeng YANG, Xiangnan GONG. Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3[J]. Chinese Journal of Materials Research, 2022, 36(3): 206-212.

全文: PDF(5283 KB)   HTML
摘要: 

在Li2SnO3中掺杂Si,研究了Si掺杂Li2SnO3对四环素的光催化降解性能。结果表明,对Li2SnO3进行等电子Si掺杂使其光学吸收带隙减小和光吸收系数增大,提高了对四环素的光催化降解效率。等电子Si掺杂Li2SnO3为纯相不规则块状固体,随着Si掺杂量的增加其晶格参数呈减小的趋势。Si掺杂使样品的光催化性能显著提高。Si掺杂量为10%的样品,在紫外光照射25 min后光催化降解效率为75.8%,约为母体的2倍。Si掺杂Li2SnO3的光催化降解行为满足赝一级动力学模型,拟合速率常数为0.02464 min-1。在Si掺杂Li2SnO3的价带顶形成的Si-O键减少了光学吸收带隙,使其光吸收能力增强。Si掺杂Li2SnO3的光催化降解机制,属于空穴主导型。

关键词 无机非金属材料Si掺杂光催化能带计算四环素    
Abstract

The photocatalytic degradation of tetracycline by Si-doped Li2SnO3 was investigated. The results show that, through iso-electron Si doping the optical absorption band gap of Li2SnO3 may be reduced, while its optical absorption coefficient is increased, in consequence, the photocatalytic degradation efficiency of the Si-doped Li2SnO3 fortetracycline is enhanced. The isoelectronicaly Si-doped Li2SnO3 is a pure and irregular mass solid, and its lattice parameters tend to decrease with the increase of Si doping amount. The photocatalytic performance of the Si-doped Li2SnO3 was significantly improved by Si doping. Under UV irradiation for 25 min, the photocatalytic degradation efficiency of tetracycline by the Si 10%-doped Li2SnO3 is 75.8%, which is about twice as that by the simple Li2SnO3. The photocatalytic degradation behavior of Si-doped Li2SnO3 conforms to the pseudo-first-order kinetic model, and the fitting rate constant is 0.02464 min-1. The Si-O bond formed on the top of the valence band of Si-doped Li2SnO3 reduces the optical absorption band gap and enhances its optical absorption capacity. The photocatalytic degradation mechanism of Si-doped Li2SnO3 is cave-dominated.

Key wordsinorganic non-metallic materials    Si doping    photocatalysis    band gap calculation    tetracycline
收稿日期: 2021-04-25     
ZTFLH:  O643  
基金资助:重庆英才创新创业示范团队(CQYC201903178);重庆市重庆市教育委员会科学技术研究项目(KJQN202001613);教育部学校规划建设发展中心重庆第二师范学院儿童研究院课题(CSDP19FS01204);重庆第二师范学院国家自科基金校级培育项目(18GZKP01);重庆第二师范学院大学生科研项目(KY20200138)
作者简介: 李园园,女,1985年生,副教授
图1  Li2Sn1-x Si x O3(x=0,0.05,0.1)的XRD谱(a)和LSO的SEM照片(b)
SamplesLattice parameters/nmLattice volume/nm3
Li2SnO3a=0.52950b=0.91840c=1.00320V=0.48024
Li2Sn0.95Si0.05O3a=0.53001b=0.91695c=1.00143V=0.47923075
Li2Sn0.90Si0.10O3a=0.53007b=0.91625c=1.00157V=0.47919176
表1  Li2Sn1-x Si x O3(x=0,0.05,0.1)的晶格参数
图2  LSO和LSSO-10的UV-vis漫反射谱(a)以及LSO和LSSO-10的(αhv)2与hv的关系(b)
图3  Li2Sn1-x Si x O3(x=0,0.05,0.1)的光催化降解TC图(a)、Li2Sn0.90Si0.10O3 UV下光催化降解TC的紫外吸收光谱(b)、光催化降解TC的一阶动力学线性拟合(c)以及TC光降解拟合的动力学常数(d)
图4  LSSO-10降解TC溶液活性自由基捕获实验
图5  Li2SnO3 (a)和Li2Sn0.9375Si0.0625O3 (b)的能带结构
图6  Li2Sn0.9375Si0.0625O3的轨道能级投影图
图7  Li2SnO3(a)和Li2Sn0.9375Si0.0625O3(b)的电子态密度
图8  Li2Sn0.90Si0.10O3光催化剂在紫外光照射下光催化降解TC的机理
1 Wang H L, Zhang L H, Chen Z G, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances [J]. Chemical Society Reviews, 2014, 43: 5234
2 Philip Jeeva M., Aravind Usha K., Charuvila T. Aravindakumar. Emerging contaminants in Indian environmental matrices-A review [J]. Chemosphere, 2018, 190: 307
3 Ji L L, Chen W, Duan L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents [J]. Environ. Sci. Technol, 2009, 43: 2322
4 Jin C, Li W, Chen Y S, et al. Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and K-doped exfoliated g-C3N4 nano-sheets [J]. Industrial & Engineering Chemistry Research, 2020, 59: 2860
5 Yan X Q, Yuan K, Lu N, et al.. The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification [J]. Applied Catalysis B: Environmental, 2017, 218: 20
6 Li Y Y, Diao Y, Wang X Y, et al. Zn4B6O13: Efficient Borate Photocatalyst with Fast Carrier Separation for Photodegradation of Tetracycline [J]. Inorganic Chemistry, 2020, 59: 13136
7 Hu H Y, Lin Y, Hu Y H. Phase role of white TiO2 precursor in its reduction to black TiO2 [J]. Physics Letters A, 2019, 383: 2978
8 Li M, Tu X L, Wang Y H, et al. Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition [J]. Nano-Micro Letters, 2018, 10: 79
9 Huang H W, Li X W, Wang J J, et al. Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO3 2–- doped Bi2O2CO3 [J]. ACS Catalysis, 2015, 5: 4094
10 Zhai H J, Kang J W, Wang R, et al. Study on photocatalytic performance of copper doped titanium dioxide [J]. Journal of Jilin Normal University (Natural Science Edition) 2020, 41: 6
10 翟宏菊, 康静文, 王 然 等. 铜掺杂二氧化钛光催化性能研究 [J].吉林师范大学学报(自然科学版), 2020, 41: 6
11 Navaratnarajah K, Apostolos K, Alexander C. Li2SnO3 as a cathode material for lithium-ion batteries: defects, lithium ion diffusion and dopants [J]. Scientific Reports, 2018, 8: 12621
12 Giulio F, Claire V, Izabela C, et al. SnO2 model electrode cycled in Li-ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions [J]. ACS Applied Materials Interfaces, 2018, 10: 8712
13 Miguel G -T, Javier B, David M, et al. Li2SnO3 branched nano- and microstructures with intense and broadband white-light emission [J]. Nano Research, 2019, 12: 441
14 Li Y Y, Wu M J, Yang D F, et al. Novel high efficiency layered oxide photocatalyst Li2SnO3 for rhodamine B and tetracycline degradation [J]. Catalysts, 2019, 9: 712
15 Cao R P, Wang W D, Zhang J L, et al. Synthesis and luminescence properties of Li2SnO3:Mn4+ red-emitting phosphor for solid-state lighting [J]. Journal of Alloys and Compounds, 2017, 704: 124
16 Blöchl P. E.. Projector augmented-wave method [J]. Physical Review B, 1994, 50: 17953
17 John P. P, Kieron B, Matthias E. Generalized gradient approximation made simple [J]. Phys. Rev. Lett, 1996, 77(18): 3865
18 Chadi D.J.. Special points for Brillouin-zone integrations [J]. Physical Review B, 1977, 16(4): 1746
19 Von G. KF.S, R. H. Die Kristallstruktur von Li2SnO3 [J]. Z. Fuer Anorg Und Allg Chem, 1970, 379: 242
20 Jyoti K, Syed M A, Ufana R. Highly efficient photocatalytic degradation of amido black 10B dye using polycarbazole-decorated TiO2 nanohybrids [J]. ACS Omega, 2017, 2: 8354
21 Li Y Y, Tian X F, Wang Y Q, et al. In situ construction of a MgSn(OH)6 perovskite/SnO2 type-II heterojunction: a highly efficient photocatalyst towards photodegradation of tetracycline [J]. Nanomaterials, 2020, 10(1): 53
22 Xue J J, Ma S S, Zhou Y M, et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation [J]. ACS Applied Materials Interfaces, 2015, 7: 9630
23 Houlong L Z, Richard G H. Theoretical perspective of photocatalytic properties of single-layer SnS2 [J]. Physical Review B, 2013, 88: 115314
24 Liu G C, Jin Z, Zhang X B, et al. Hydrothermal synthesis and photocatalytic properties of Cu-doped BiVO4 microplates [J]. Journal of Inorganic Materials, 2013, 28(03): 287
24 刘国聪, 金 真, 张喜斌 等. Cu掺杂BiVO4微米片的水热合成和光催化性能 [J]. 无机材料学报, 2013, 28(03): 287
25 Zhang W H, Ji Q H, Lan H C, et al. Preparation of ZnTiO3-TiO2 composite photocatalyst and mechanism of photocatalytic degradation of organic pollutants [J]. Environmental Science, 40(02): 693
25 张文海, 吉庆华, 兰华春 等. ZnTiO3-TiO2复合光催化剂的制备及光催化降解有机污染物机制分析 [J].环境科学, 2019, 40(2): 693
26 Niu S Y, Zhang R Y, Zhang Z Y, et al.. In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity [J]. Inorganic Chemistry Frontiers, 2019, 6: 791
27 Li M Y, Tang Y B, Shi W L, et al. Design of visible-light-response core-shell Fe2O3/CuBi2O4 heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic mechanism insight [J]. Inorganic Chemistry Frontiers, 2018, 5: 3148
28 Chen H Y, He F, Zhang X H, et al. Photocatalytic reduction performance of palladium-nitrogen co-doped TiO2 films [J]. Journal of Materials Research, 2017, 31(04): 255
28 陈海洋, 何 菲, 张旭海 等. 钯氮共掺杂TiO2薄膜的光催化还原性能 [J]. 材料研究学报, 2017, 31(04): 255
29 Chen K S, Li Y, Tian H, et al. Preparation and photocatalytic activity of Bi4Ti3O12/TiO2 heterojunction [J]. Journal of Materials Research, 2014, 28(07): 503
29 陈侃松, 黎 旸, 田 寒 等. Bi4Ti3O12/TiO2异质结的制备及其光催化性能 [J]. 材料研究学报, 2014, 28(07): 503
30 Cheng T, Dong P Y, Gao X, et al. Preparation of CsTi2NbO7@N-TiO2 hybrid core-shell structure and its visible light catalytic activity [J]. Journal of Materials Research, 2021, 35(03): 221
30 程 婷, 董鹏玉, 高 欣 等. CsTi2NbO7@N-TiO2杂化核壳结构的制备及其可见光催化性能 [J].材料研究学报, 2021, 35(03): 221
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.