|
|
基于Si掺杂增强光吸收提升Li2SnO3 光催化降解四环素的研究 |
李园园1( ), 曾寒露1, 蒲红争1, 蒋明珠1, 王仲明1, 杨怡萌1, 公祥南2 |
1.重庆第二师范学院生物与化学工程学院 重庆 400067 2.重庆大学分析测试中心 重庆 401331 |
|
Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3 |
LI Yuanyuan1( ), ZENG Hanlu1, PU Hongzheng1, JIANG Mingzhu1, WANG Zhongming1, YANG Yimeng1, GONG Xiangnan2 |
1.College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China 2.Analytical and Testing Center of Chongqing University, Chongqing 401331, China |
引用本文:
李园园, 曾寒露, 蒲红争, 蒋明珠, 王仲明, 杨怡萌, 公祥南. 基于Si掺杂增强光吸收提升Li2SnO3 光催化降解四环素的研究[J]. 材料研究学报, 2022, 36(3): 206-212.
Yuanyuan LI,
Hanlu ZENG,
Hongzheng PU,
Mingzhu JIANG,
Zhongming WANG,
Yimeng YANG,
Xiangnan GONG.
Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3[J]. Chinese Journal of Materials Research, 2022, 36(3): 206-212.
1 |
Wang H L, Zhang L H, Chen Z G, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances [J]. Chemical Society Reviews, 2014, 43: 5234
|
2 |
Philip Jeeva M., Aravind Usha K., Charuvila T. Aravindakumar. Emerging contaminants in Indian environmental matrices-A review [J]. Chemosphere, 2018, 190: 307
|
3 |
Ji L L, Chen W, Duan L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents [J]. Environ. Sci. Technol, 2009, 43: 2322
|
4 |
Jin C, Li W, Chen Y S, et al. Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and K-doped exfoliated g-C3N4 nano-sheets [J]. Industrial & Engineering Chemistry Research, 2020, 59: 2860
|
5 |
Yan X Q, Yuan K, Lu N, et al.. The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification [J]. Applied Catalysis B: Environmental, 2017, 218: 20
|
6 |
Li Y Y, Diao Y, Wang X Y, et al. Zn4B6O13: Efficient Borate Photocatalyst with Fast Carrier Separation for Photodegradation of Tetracycline [J]. Inorganic Chemistry, 2020, 59: 13136
|
7 |
Hu H Y, Lin Y, Hu Y H. Phase role of white TiO2 precursor in its reduction to black TiO2 [J]. Physics Letters A, 2019, 383: 2978
|
8 |
Li M, Tu X L, Wang Y H, et al. Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition [J]. Nano-Micro Letters, 2018, 10: 79
|
9 |
Huang H W, Li X W, Wang J J, et al. Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO3 2–- doped Bi2O2CO3 [J]. ACS Catalysis, 2015, 5: 4094
|
10 |
Zhai H J, Kang J W, Wang R, et al. Study on photocatalytic performance of copper doped titanium dioxide [J]. Journal of Jilin Normal University (Natural Science Edition) 2020, 41: 6
|
10 |
翟宏菊, 康静文, 王 然 等. 铜掺杂二氧化钛光催化性能研究 [J].吉林师范大学学报(自然科学版), 2020, 41: 6
|
11 |
Navaratnarajah K, Apostolos K, Alexander C. Li2SnO3 as a cathode material for lithium-ion batteries: defects, lithium ion diffusion and dopants [J]. Scientific Reports, 2018, 8: 12621
|
12 |
Giulio F, Claire V, Izabela C, et al. SnO2 model electrode cycled in Li-ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions [J]. ACS Applied Materials Interfaces, 2018, 10: 8712
|
13 |
Miguel G -T, Javier B, David M, et al. Li2SnO3 branched nano- and microstructures with intense and broadband white-light emission [J]. Nano Research, 2019, 12: 441
|
14 |
Li Y Y, Wu M J, Yang D F, et al. Novel high efficiency layered oxide photocatalyst Li2SnO3 for rhodamine B and tetracycline degradation [J]. Catalysts, 2019, 9: 712
|
15 |
Cao R P, Wang W D, Zhang J L, et al. Synthesis and luminescence properties of Li2SnO3:Mn4+ red-emitting phosphor for solid-state lighting [J]. Journal of Alloys and Compounds, 2017, 704: 124
|
16 |
Blöchl P. E.. Projector augmented-wave method [J]. Physical Review B, 1994, 50: 17953
|
17 |
John P. P, Kieron B, Matthias E. Generalized gradient approximation made simple [J]. Phys. Rev. Lett, 1996, 77(18): 3865
|
18 |
Chadi D.J.. Special points for Brillouin-zone integrations [J]. Physical Review B, 1977, 16(4): 1746
|
19 |
Von G. KF.S, R. H. Die Kristallstruktur von Li2SnO3 [J]. Z. Fuer Anorg Und Allg Chem, 1970, 379: 242
|
20 |
Jyoti K, Syed M A, Ufana R. Highly efficient photocatalytic degradation of amido black 10B dye using polycarbazole-decorated TiO2 nanohybrids [J]. ACS Omega, 2017, 2: 8354
|
21 |
Li Y Y, Tian X F, Wang Y Q, et al. In situ construction of a MgSn(OH)6 perovskite/SnO2 type-II heterojunction: a highly efficient photocatalyst towards photodegradation of tetracycline [J]. Nanomaterials, 2020, 10(1): 53
|
22 |
Xue J J, Ma S S, Zhou Y M, et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation [J]. ACS Applied Materials Interfaces, 2015, 7: 9630
|
23 |
Houlong L Z, Richard G H. Theoretical perspective of photocatalytic properties of single-layer SnS2 [J]. Physical Review B, 2013, 88: 115314
|
24 |
Liu G C, Jin Z, Zhang X B, et al. Hydrothermal synthesis and photocatalytic properties of Cu-doped BiVO4 microplates [J]. Journal of Inorganic Materials, 2013, 28(03): 287
|
24 |
刘国聪, 金 真, 张喜斌 等. Cu掺杂BiVO4微米片的水热合成和光催化性能 [J]. 无机材料学报, 2013, 28(03): 287
|
25 |
Zhang W H, Ji Q H, Lan H C, et al. Preparation of ZnTiO3-TiO2 composite photocatalyst and mechanism of photocatalytic degradation of organic pollutants [J]. Environmental Science, 40(02): 693
|
25 |
张文海, 吉庆华, 兰华春 等. ZnTiO3-TiO2复合光催化剂的制备及光催化降解有机污染物机制分析 [J].环境科学, 2019, 40(2): 693
|
26 |
Niu S Y, Zhang R Y, Zhang Z Y, et al.. In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity [J]. Inorganic Chemistry Frontiers, 2019, 6: 791
|
27 |
Li M Y, Tang Y B, Shi W L, et al. Design of visible-light-response core-shell Fe2O3/CuBi2O4 heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic mechanism insight [J]. Inorganic Chemistry Frontiers, 2018, 5: 3148
|
28 |
Chen H Y, He F, Zhang X H, et al. Photocatalytic reduction performance of palladium-nitrogen co-doped TiO2 films [J]. Journal of Materials Research, 2017, 31(04): 255
|
28 |
陈海洋, 何 菲, 张旭海 等. 钯氮共掺杂TiO2薄膜的光催化还原性能 [J]. 材料研究学报, 2017, 31(04): 255
|
29 |
Chen K S, Li Y, Tian H, et al. Preparation and photocatalytic activity of Bi4Ti3O12/TiO2 heterojunction [J]. Journal of Materials Research, 2014, 28(07): 503
|
29 |
陈侃松, 黎 旸, 田 寒 等. Bi4Ti3O12/TiO2异质结的制备及其光催化性能 [J]. 材料研究学报, 2014, 28(07): 503
|
30 |
Cheng T, Dong P Y, Gao X, et al. Preparation of CsTi2NbO7@N-TiO2 hybrid core-shell structure and its visible light catalytic activity [J]. Journal of Materials Research, 2021, 35(03): 221
|
30 |
程 婷, 董鹏玉, 高 欣 等. CsTi2NbO7@N-TiO2杂化核壳结构的制备及其可见光催化性能 [J].材料研究学报, 2021, 35(03): 221
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|