Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (9): 657-666    DOI: 10.11901/1005.3093.2021.005
  研究论文 本期目录 | 过刊浏览 |
成核-生长型液-液分相对无铅低温熔剂性能的影响
汪鹏1, 卢希龙1,2(), 曹春娥1(), 陈云霞1,2, 沈华荣1, 张旭1
1.景德镇陶瓷大学材料科学与工程学院 景德镇 333403
2.景德镇市环境陶瓷材料重点实验室 景德镇 333000
Influence of Nucleation-growth Liquid-liquid Phase Partition on Properties of Lead-free Low Temperature Frit
WANG Peng1, LU Xilong1,2(), CAO Chun-e1(), CHEN Yunxia1,2, SHEN Huarong1, ZHANG Xu1
1.College of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
2.Jingdezhen Key Laboratory of Environmental Ceramic Materials, Jingdezhen 333000, China
引用本文:

汪鹏, 卢希龙, 曹春娥, 陈云霞, 沈华荣, 张旭. 成核-生长型液-液分相对无铅低温熔剂性能的影响[J]. 材料研究学报, 2021, 35(9): 657-666.
Peng WANG, Xilong LU, Chun-e CAO, Yunxia CHEN, Huarong SHEN, Xu ZHANG. Influence of Nucleation-growth Liquid-liquid Phase Partition on Properties of Lead-free Low Temperature Frit[J]. Chinese Journal of Materials Research, 2021, 35(9): 657-666.

全文: PDF(4149 KB)   HTML
摘要: 

采用高温熔制结合低温热处理制备成核-生长型液-液纳米级分相的低温熔剂,研究了分相结构对熔剂的光泽度、光泽损失、显微维氏硬度等性能的影响,用HSM和DSC研究熔剂高温变化过程中的特征点并找出了合适的热处理工艺参数,根据XRD分析了熔剂的晶相组成,用SEM和TEM观察了分相显微形貌,根据FTIR分析了分相的显微结构,根据熔剂的性能研究了分相结构改善其性能的机理。结果表明:与水淬工艺样品相比,适当的热处理可调控分散相的尺寸、体积分数和分布,使熔剂的显微硬度和耐磨性显著提高。随着热处理温度的提高熔剂的光泽损失呈“Z”字形变化,而显微硬度的变化趋势与其相反。热处理温度为630℃时光泽损失最小(26.4%),显微硬度最大(6202 MPa),耐磨等级达到3级(750转)。随着热处理温度的提高分散相的液滴尺寸和体积分数呈开口向下的抛物线变化。分相使碱-硼-铈富集在分散相中,分散相的尺寸和体积分数越大则连续相中的游离氧减少,即O/Si比减小,[SiO4]及桥氧增多,网络聚合度提高。同时,熔剂具有致密的表面层,分相结构存在于熔剂内部,富碱-硼-铈相以滴状分散嵌入在富硅氧连续相中,富硅氧对碱硼相的保护使熔剂的耐磨性和显微硬度提高。

关键词 无机非金属材料玻璃与非晶低温熔剂热处理分相碱硼硅酸盐    
Abstract

The nucleation-growth type liquid-liquid nano-phase partitioned low-temperature frits were prepared via a two-step process: high-temperature melting and low-temperature heat treatment. The influence of the phase-partition on the gloss, gloss loss, microhardness and other properties of the ABS* lead-free low-temperature frit were assessed by means of high temperature microscopy, differential scanning calorimetry, X-ray diffractometer, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results show that the size, volume fraction and distribution of the dispersed phase can be effectively adjusted with the aid of appropriate heat treatment processes. The heat-treated frits present microhardness and wear resistance much higher than those of the water-quenched ones. With the increasing heat treatment temperature, the gloss loss of the frits experienced a "Z" shaped variation and the microhardness experienced a reverse trend. Being heat treated at 630℃, the frit presents the smallest gloss loss of 26.4%, the largest hardness of 6202 MPa, whilst its wear resistance can be classified as grade 2 (750 revolutions). The size and the volume of the phase-partition generated dispersive droplets show a downward parabola-like variation as the heat treatment temperature increases. The phase partition facilitates the enrichment of alkali, cerium and boron in the dispersed phase. As the size and volume fraction of the dispersed phases in the frit increases, the free oxygen in the continuous matrix decreases, that is, the O/Si ratio decreases, while the amount of [SiO4] and bridge oxygen increases and the polymerization degree of the network increases. Besides the frit has a dense surface layer, namely the phase-partitioning structure exists inside the frit. The phase rich in alkali, cerium and boron dispersed and embedded in the Si-rich continuous matrix as droplets, in other words the former is protected by the later one. Therefore, the wear resistance and microhardness of the frits were enhanced .

Key wordsinorganic non-metallic materials    glass and amorphous    low-temperature frit    heat treatment    phase separation    alkali borosilicate
收稿日期: 2021-01-13     
ZTFLH:  TQ174.4  
基金资助:国家自然科学基金(51862019);江西省教育厅基金(GJJ160883);景德镇市科技项目(20182GYDZ011-16)
作者简介: 汪鹏,男,1987年生,博士生
OxideSiO2B2O3Al2O3CeO2CaOK2ONa2OLi2O
R053.2026.075.051.413.623.472.664.48
表1  基础配方R0的化学组成
SamplesR0R1R2R3R4R5
Initial Temperature/℃Water quenching550550550550550
Soking time/min-120120120120120
Heating rate /℃/min-00.30.611.3
Final Temperature/℃-550590630670710
Soking time/min-120120120120120
表2  样品R0的非等温热处理制度
图1  熔剂样品R0的DSC曲线
图2  部分样品的XRD谱
图3  熔剂R0的高温显微镜照片
图4  试样的柱正投影面积与温度的关系
CodeR0R1R2R3R4R5
Temperature/℃Water quenching550590630670710
Intial gloss109103108110112106
Gloss after grinding587175816360
Gloss loss/%46.731.130.526.443.743.4
Vickers hardness/MPa495761136158620250655005
wear resistance(750 revolutions)222222
表3  非等温热处理对熔剂性能的影响
图5  光泽损失与终温热处理温度的关系
图6  显微维氏硬度与热处理温度的关系
图7  熔剂样品的横截面SEM照片
图8  熔剂分相液滴的尺寸分布
图9  熔剂中分相液滴的体积分数和平均尺寸
图10  样品R0的TEM照片
图11  样品R3的TEM照片
图12  样品R3的TEM照片和EDS能谱
Element (%, mass fraction)NaAlSiKCaCuCeOTotal
Spot A0.713.2821.410.956.7718.6711.1537.06100
Spot B0.763.9326.340.754.9613.369.0640.83100
Spot C0.185.5129.571.081.8015.552.4043.92100
表4  样品R3的TEM图中A、B、C三点的化学组成
图13  样品R3横截面的SEM照片
图14  样品的红外光谱
1 Wheaton B R, Clare A G. Evaluation of phase separation in glasses with the use of atomic force microscopy [J]. J. Non-Cryst. Solids, 2007, 353(52-54): 4767
2 Morizet Y, Alech Q. Estimation of viscosities in the CaO-SiO2 and CaO-Al2O3-SiO2 melt systems using high temperature hot stage microscopy [J]. Phys. Chem. Glasses, 2014, 55(1): 41
3 Northwest Institute of Light Industry. Glass Technology [M]. Beijing: China Light Industry Press, 2006
3 西北轻工业学院. 玻璃工艺学 [M]. 北京: 中国轻工业出版社, 2006
4 Werner V. Glass Chemistry [M]. Berlin: Springer-Verlag, 1994
5 Duminis T, Shahid S, Hill R G. Apatite glass-ceramics: a review [J]. Frontiers in Materials, 2017, 3: 1
6 Cao C E, Gu X Y, Wang Y X, et al. Inorganic Material Testing Technology [M]. Nanchang: Jiangxi Universities and Colleges Press, 2011
6 曹春娥, 顾幸勇, 王艳香等. 无机材料测试技术 [M]. 南昌: 江西高校出版社, 2011
7 Shelby J E. Introduction to Glass Science and Technology [M]. Cornwall: The Royal Society of Chemistry, 2005
8 Tovhowani I K, Sharon K, Stephan A H. Effect of Al2O3 on phase separation and microstructure of R2O-B2O3-Al2O3-SiO2 glass system (R=Li, Na) [J]. J. Non-Cryst. Solids, 2020, 531: 119849
9 Aytug T, Simpson J T, Lupini A R, et al. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films [J]. Nanotechnology, 2013, 24(31): 315602
10 Minamiyama S I, Daiko Y, Mineshige A, et al. Spinodal-type phase separation and proton conductivity of Al2O3-doped porous glasses [J]. J. Ceram. Soc. Jpn., 2010, 118(1384): 1131
11 Ertu E B, Ahmetoglu C V, Ozturk A. Production and properties of phase separated porous glass [J]. Ceram. Int., 2019, 46(4): 4947
12 Smedskjaer M M, Yue Y. Inward and outward diffusion of modifying ions and its impact on the properties of glasses and glass-ceramics [J]. Int. J. Appl. Glass Sci., 2011, 2(2): 117
13 Smedskjaer M M, Mauro J C, Yue Y. Cation diffusivity and the mixed network former effect in borosilicate glasses [J]. J. Phys. Chem. B, 2015, 119(23): 7106
14 Wang P. Study on high-quality low-temperature alkali borosilicate system frit [D]. Jingdezhen: Jingdezhen Ceramic Institute, 2012
14 汪鹏. 高品质碱硼硅系统低温熔剂的研究 [D]. 景德镇: 景德镇陶瓷学院, 2012
15 Standardization Administration of the People's Republic of China. , Ceramic tiles test method Part 7: Determination of the surface wear resistance of glazed tiles [S]
15 中国国家标准化管理委员会. , 陶瓷砖试验方法第7部分:有釉砖表面耐磨性的测定[S]
16 Smiljanić S V, Grujić S R, Tošić M B, et al. Crystallization and sinterability of glass-ceramics in the system La2O3-SrO-B2O3 [J]. Ceram. Int., 2014, 40(1): 297
17 Zhang Q X, Li W L, Zhuang H R. Sintering at low temperature and performance for AlN/glass composites [J]. Chin. J. Mater. Res., 2003, 17(1): 79
17 张擎雪, 李文兰, 庄汉锐. AlN/玻璃复合材料的低温烧结和性能 [J]. 材料研究学报, 2003, 17(1): 79
18 Fernandes H R, Tulyaganov D U, Pascual M J, et al. The role of K2O on sintering and crystallization of glass powder compacts in the Li2O-K2O-Al2O3-SiO2 system [J]. J. Eur. Ceram. Soc., 2012, 32(10): 2283
19 Amorós J L, Gómeztena M P, Moreno A, et al. Dissolution, crystallisation, and sintering of a raw matt glaze for porcelain tiles [J]. Adv. Mater. Res., 2013, 704: 132
20 Feng T, Lu X L, Cao C E, et al. Effect of heat treatment time on alkali resistance of pollution-free overglaze frits [J]. China Ceramics, 2017, 53(1): 32
20 冯涛, 卢希龙, 曹春娥等. 热处理时间对无公害釉上熔剂耐碱性的影响 [J]. 中国陶瓷, 2017, 53(1): 32
21 Häßler J, Rüssel C. Self-organized growth of sodium borate-rich droplets in a phase-separated sodium borosilicate glass [J]. Int. J. Appl. Glass Sci., 2017, 8: 124
22 Dragic P, Jagannathan S, Ackerman L, et al. Random lasing from optical fibers with phase separated glass cores [J]. Opt. Express, 2020, 28(15): 22049
23 Veksler I V, Dorfman A M, Dingwell D B, et al. Element partitioning between immiscible borosilicate liquids: A high-temperature centrifuge study [J]. Geochim. Cosmochim. Acta, 2002, 66(14): 2603
24 El-Egili K. Infrared studies of Na2O-B2O3-SiO2 and Al2O3-Na2O-B2O3-SiO2 glasses [J]. Phys. B, 2003, 325: 340
25 Dias J, Melo G, Lodi T, et al. Thermal and structural properties of Nd2O3-doped calcium boroaluminate glasses [J]. J. Rare Earths, 2016, 34(5): 521
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 徐阳, 李彦睿, 刘宝胜, 刘雯, 张少华, 卫英慧. 无取向硅钢中第二相的析出行为[J]. 材料研究学报, 2023, 37(1): 47-54.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.