Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (8): 606-614    DOI: 10.11901/1005.3093.2020.553
  研究论文 本期目录 | 过刊浏览 |
热处理对选区激光熔化17-4PH不锈钢力学性能的影响
秦奉1,2,3,4, 施麒2,3,4, 刘辛2,3,4, 周舸1(), 陈立佳1
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.广东省科学院材料与加工研究所 广州 510605
3.广东省金属强韧化技术与应用重点实验室 广州 510650
4.国家钛及稀有金属粉末冶金工程技术研究中心 广州 510650
Effect of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted 17-4PH Stainless Steel
QIN Feng1,2,3,4, SHI Qi2,3,4, LIU Xin2,3,4, ZHOU Ge1(), CHEN Lijia1
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510650, China
3.Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China
4.National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Guangzhou 510650, China
引用本文:

秦奉, 施麒, 刘辛, 周舸, 陈立佳. 热处理对选区激光熔化17-4PH不锈钢力学性能的影响[J]. 材料研究学报, 2021, 35(8): 606-614.
Feng QIN, Qi SHI, Xin LIU, Ge ZHOU, Lijia CHEN. Effect of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted 17-4PH Stainless Steel[J]. Chinese Journal of Materials Research, 2021, 35(8): 606-614.

全文: PDF(18310 KB)   HTML
摘要: 

对选区激光熔化成形的17-4PH不锈钢分别进行真空热处理、热等静压高压淬火处理和组合热处理(热等静压固溶后快淬和马弗炉时效后水冷),在1040℃固溶处理2 h和在480℃时效4 h,观察其显微组织并研究了热处理对其力学性能的影响。结果表明,17-4PH不锈钢由回火马氏体和淬火马氏体组成,热处理后沉淀相弥散分布于晶粒内部,其颗粒尺寸为100~150 nm。真空热处理使合金内部孔隙的尺寸减小到3~7 μm,而热等静压使内部孔隙几乎完全闭合,使钢的密度基本上达到理论值。真空热处理+水淬使沉积态17-4PH不锈钢的抗拉强度和硬度都显著提高(分别提高到1300 MPa和448.5HV);热等静压在提高沉积态17-4PH不锈钢抗拉强度的同时使其延伸率显著提高到22.4%。断口分析结果表明,沉积态和热等静压样品的断口形貌为典型的韧性断裂,热等静压样品的韧窝更深、尺寸更大。真空热处理和组合热处理样品的断口形貌具有部分脆性断裂的特征且出现裂纹,与沉积态相比塑性略有降低。

关键词 金属材料激光选区熔化热等静压17-4PH钢力学性能    
Abstract

The laser selectively melted 17-4PH stainless steel was subjected to different post-heat treatment, i.e. vacuum heat treatment (1040℃/2 h+water quenching and 480℃/4 h+water quenching), hot isostatic pressing heat treatment (1040℃-150 MPa/2 h HIP +gas rapid cooling and vacuum 480℃-100 MPa/4 h+GRC) and combined heat treatment (1040℃-150 MPa/2 h HIP+GRC and vacuum 480℃/4 h+water quenching). Afterwards, the microstructure and mechanical performance of the laser melted steels were characterized by means of optical microscopy, electron scanning microscopy, microhardness tester and universal tensile tester. The results show that the vacuum heat treatment can reduce the inner pore size down to 3~7 μm. After hot isostatic pressing treatment, all pores almost closed and the density is almost of the theoretical value of the laser deposited 17-4PH stainless stee. After heat treatment, the 17-4PH stainless steel composed of tempered- and quenched-martensite, and the precipitates with size of 100~150 nm dispersed in grains. Vacuum heat treatment + water quenching can significantly increase the tensile strength and hardness of the deposited 17-4PH stainless steel to 1300 MPa and 448.5HV, respectively. Hot isostatic pressing heat treatment can significantly increase the tensile strength of the deposited 17-4PH stainless steel, at the same time, its elongation at break reaches 22.4%.The fracture morphology of the as deposited 17-4PH SS and the one after hot isostatic pressing heat treatment was typical ductile fracture, and the dimples of hot isostatic pressing heat treatment ones were larger in size and deeper in depth. The fracture morphologies of the deposited 17-4PH SS after vacuum heat treatment and combined heat treatment have the characteristics of partial brittle fracture and emergence of a few cracks, whilst who's plasticity decreases slightly, in comparison with that of the as deposited ones.

Key wordsmetallic materials    selective laser melting    hot isostatic pressing    17-4PH steel    mechanical properties
收稿日期: 2020-12-22     
ZTFLH:  TG142.1+4  
基金资助:广东省自然科学基金(2018A030313127)
作者简介: 秦奉,女,1996年生,硕士生

Laser

power/W

Scanning speed

/mm·s-1

Layer

thickness/μm

Hatch

distance/μm

20075540110
表1  选区激光熔化工艺参数
图1  选区激光熔化17-4PH不锈钢真空热处理、HIP热处理和组合热处理的工艺
图2  拉伸试样的形状和尺寸
图3  17-4 PH不锈钢粉末的形貌
图4  17-4 PH不锈钢原料粉末的粒度分布和X射线衍射谱
图5  沉积态和热处理态17-4PH不锈钢的致密度
图6  沉积态17-4PH不锈钢试样的表面形貌和侧面微观孔隙
图7  选区激光熔化17-4PH不锈钢的真空热处理、HIP热处理和组合热处理态的侧面微观孔隙
图8  沉积态和不同热处理态的选区激光熔化17-4PH不锈钢的X射线衍射谱
图9  选区激光熔化17-4PH不锈钢的光镜和扫描电镜照片
图10  选区激光熔化17-4PH不锈钢真空热处理、HIP热处理和组合热处理后的微观组织
图11  HIP热处理样品的TEM照片
图12  不同状态的选区激光熔化17-4PH不锈钢的显微硬度
图13  不同状态的选区激光熔化17-4PH不锈钢的抗拉强度和延伸率
图14  选区激光熔化17-4PH不锈钢沉积态、真空热处理、HIP热处理和组合热处理断口的整体形貌
图15  选区激光熔化17-4PH不锈钢沉积态、真空热处理、HIP热处理和组合热处理后断口的形貌
1 Chen B, Chen H F, Wang Z M. Present situation and development trend of 17-4PH stainless steel[J]. Journal of Shanghai Institute of Technology (Natural Science)., 2016,16(01):83
1 陈贝, 陈惠芬, 王泽民. 17-4PH不锈钢的研究现状及发展趋势 [J]. 上海应用技术学院学报(自然科学版), 2016, 16(01): 83
2 Gu X L, Shi J G, Liu P, et al. Study on selective laser melted 17-4 PH alloy [J]. Mechanical Engineer., 2017(02): 69
2 顾小龙, 史金光, 刘平等. 选择性激光熔化17-4PH合金的成形研究 [J]. 机械工程师, 2017(02): 69
3 Wang S, Lu Z J, Yang C G, et al. Antibacterial performance of 17-4 PH stainless steel [J]. Chinese Journal of Materials Research., 2014, 28(01): 15
3 王帅, 卢志江, 杨春光等. 17-4PH不锈钢的抗菌性能 [J]. 材料研究学报, 2014, 28(01): 15
4 Yao Y S, Tang J P, Wang J, et al. Study on forming technology and properties of 316L stainless steel by selective laser melting [J]. Laser & Optoelectronics Progress., 2021, 58(01): 239
4 唐建平, 汪俊, 葛张森等. 选区激光熔化316L不锈钢成形工艺与性能研究 [J]. 激光与光电子学进展, 2021, 58(01): 239
5 Liu B Q, Fang G, Lei L P. An analytical model for rapid predicting molten pool geometry of selective laser melting (SLM) [J]. Applied Mathematical Modelling., 2021, 92: 505
6 Ponnusamy P, Masood S H, Ruan D, et al. Statistical analysis of porosity of 17-4PH alloy processed by selective laser melting [J]. IOP Conference Series: Materials Science and Engineering., 2017, 220(1)
7 Zhou Y, Duan L C, Wu X L, et al. Effect of powder particle size on wear and corrosion resistance of S136 mould steels fabricated by selective laser melting [J]. Laser&Optoelectronics Progress., 2018,55(10): 205
7 周燕, 段隆臣, 吴雪良等. 粉末粒径对激光选区熔化成形S136模具钢的磨损与抗腐蚀性能的影响 [J]. 激光与光电子学进展, 2018, 55(10): 205
8 Ponnusamy P, Masood S H, Palanisamy S, et al. Characterization of 17-4PH alloy processed by selective laser melting [J]. ScienceDirect., 2017, 4(8): 8498
9 Irrinki H, Jangam J S D, Pasebani S, et al. Effects of particle characteristics on the microstructure and mechanical properties of 17-4 PH stainless steel fabricated by laser-powder bed fusion [J]. Powder Technology., 2018, 331: 192
10 Sun Y, Hebert R J, Aindow M. Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting [J]. Materials and Design., 2018, 140: 153
11 Rashid R, Masood S H, Ruan D, et al. Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM) [J]. Journal of Materials Processing Tech., 2017, 249: 502
12 Pasebani S, Ghayoor M, Badwe S, et al. Effects of atomizing media and post processing on mechanical properties of 17-4 PH stainless steel manufactured via selective laser melting [J]. Additive Manufacturing., 2018, 22: 127
13 Du T, Chen J, Yuan C. Effect of aging temperature on precipitation and hardening behavior of 17-4PH stainless steel [J]. Hot Working Technology., 2015, 44(04): 233
13 杜涛, 陈军, 袁诚. 时效温度对17-4PH沉淀硬化不锈钢析出行为和硬化效果的影响 [J]. 热加工工艺, 2015, 44(04): 233
14 Brandon M, Brahmananda P, Andelle K, et al. High strain rate compressive deformation behavior of an additively manufactured stainless steel [J]. Additive Manufacturing., 2018, 24: 432
15 Irrinki H, Nath S D, Alhofors M, et al. Microstructures, properties, and applications of laser sintered 17‐4PH stainless steel [J]. Journal of the American Ceramic Society., 2019, 102(9): 5679
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.