Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (8): 597-605    DOI: 10.11901/1005.3093.2020.404
  研究论文 本期目录 | 过刊浏览 |
410L430L泡沫钢性能的比较
张光成, 袁天祥, 马德林, 周萍, 郭超群, 周芸(), 左孝青
昆明理工大学材料科学与工程学院 昆明 650093
Comparision of Structure and Performance for Foamed Stainless Steels 410L and 430L
ZHANG Guangcheng, YUAN Tianxiang, MA Delin, ZHOU Ping, GUO Chaoqun, ZHOU Yun(), ZUO Xiaoqing
Kunming University of Science Technology, Faculty of Materials Science and Engineering, Kunming 650093, China
引用本文:

张光成, 袁天祥, 马德林, 周萍, 郭超群, 周芸, 左孝青. 410L430L泡沫钢性能的比较[J]. 材料研究学报, 2021, 35(8): 597-605.
Guangcheng ZHANG, Tianxiang YUAN, Delin MA, Ping ZHOU, Chaoqun GUO, Yun ZHOU, Xiaoqing ZUO. Comparision of Structure and Performance for Foamed Stainless Steels 410L and 430L[J]. Chinese Journal of Materials Research, 2021, 35(8): 597-605.

全文: PDF(15128 KB)   HTML
摘要: 

以410L和430L不锈钢粉为基体,以CaCl2为造孔剂,采用粉末冶金烧结溶解法制备出不同孔隙率的410L和430L泡沫钢并分析比较其组织和性能。结果表明:410L和430L泡沫钢的基体组织都是α-Fe;在相同的腐蚀条件下430L不锈钢的抗腐蚀性更强;在烧结过程中410L泡沫钢孔壁表面的氧化程度比430L泡沫钢严重;在准静态压缩变形过程中孔隙率为73%~83%的410L泡沫钢屈服应力为22.06~5.45 MPa,相同孔隙率的430L泡沫钢其屈服应力为56.77~10.44 MPa,430L泡沫钢的抗压强度是410L泡沫钢的2~3倍;应变量为50%时,孔隙率为73%~83%的410L泡沫钢单位体积的能量吸收值为6.12~2.90 MJ/m3。应变量为50%时,孔隙率为72%~83%的430L泡沫钢其单位体积的能量吸收值为40.35~8.25 MJ/m3。430L泡沫钢的单位体积能量吸收值约为410L泡沫钢的3~5倍。

关键词 金属材料400系泡沫钢烧结溶解孔隙率屈服应力吸能性能    
Abstract

Foamed stainless steels 410L and 430L with different porosity were made respectively with powders of the two steels as raw material and CaCl2 as pore-forming agent via a two-step process i.e., powder metallurgy sintering and post dissolution. Then their microstructure and properties were comparatively assessed. The results show that the two foamed steels of 410L and 430L are composed of merely α-Fe phase. More serious oxidation can be observed on the walls of the as fresh made 410 steel foams rather than that of 430 SS steel foams. The 430L stainless steel foam presents higher corrosion resistance than the 410L stainless steel foam. The compression test results reveal that the yield stress of 410L steel foams with porosity of 73%~83% is in the range of 22.06~5.45 MPa, the yield stress of 430L steel foams with porosity of 72%~83% is in the range of 56.77~10.44 MPa, hence, the compressive strength of 430L steel foam is 2~3 times that of 410L steel foam. Besides, when the strain reaches 50%, 410L steel foams with porosity of 73%~83% have 6.12~2.90 MJ/m3 energy absorption value per unit volume, while the corresponding value for 430L steel foams with porosity of 72%~83% is 40.35~8.25 MJ/m3. Therefore, the energy absorption value per unit volume of 430L steel foams is about 3~5 times that of 410L steel foams.

Key wordsmetallic materials    400 steel foam    sintering-dissolution    porosity    yield stress    energy absorption
收稿日期: 2020-09-27     
ZTFLH:  TB34  
基金资助:国家自然科学基金(51861020);大学生创新创业训练项目(201710674207)
作者简介: 张光成,男,1994年生,硕士
MaterialsCSiMnPSCrFe
410L≤0.03≤1.00≤2.0≤0.04≤0.03511~13Bal.
430L≤0.03≤1.00≤2.0≤0.04≤0.03516~18Bal.
表1  不锈钢粉末的实际成分
图1  410L和430L不锈钢的金相显微照片
图2  410L和430L不锈钢基体组织的SEM照片
图3  不锈钢基体组织的XRD谱
图4  410L烧结样品内孔表面的SEM照片和EDS图
图5  430L烧结样品内孔表面的SEM照片和EDS图
图6  410L和430L泡沫钢准静态轴向压缩变形的示意图
图7  410L和 430L泡沫钢试样的应力-应变曲线
Porosity/%68717781
Elastic modulus/GPa2.812.701.210.94
表2  410L泡沫钢的弹性模量
Porosity/%63697378
Elastic modulus/GPa5.784.283.061.64
表3  430L泡沫钢的弹性模量
图8  410L和430L泡沫钢的吸能曲线
1 Zhang S W. Foam metal research and application progress [J]. Powd. Metall. Technol., 2016, 34: 222
1 张士卫. 泡沫金属的研究与应用进展 [J]. 粉末冶金技术, 2016, 34: 222
2 Luo G, Xue P. Investigations on the mechanism and behavior of dynamic energy absorption of metal foam [J]. Lat. Am. J. Solids Struct., 2018, 15: 47
3 Liu Y, He X C, Deng C. Self-piercing riveting of metal foam sandwich structures [J]. Mater. Trans., 2017, 58: 1532
4 Liu P S, Qing H B. A spherical-pore foamed titanium alloy with high porosity [J]. Chin. J. Mater. Res., 2015, 29: 346
4 刘培生, 顷淮斌. 一种具有球形孔隙的高孔率泡沫钛合金 [J]. 材料研究学报, 2015, 29: 346
5 Novak N, Vesenjak M, Duarte I, et al. Compressive behaviour of closed-cell aluminium foam at different strain rates [J]. Materials, 2019, 12: 4108
6 Liu P S, Xu X B, Sun J X, et al. Sound absorption property of vacuum sintered 304 stainless steel foam [J]. Chin. J. Nonferrous Met., 2017, 27: 2560
6 刘培生, 徐新邦, 孙进兴等. 真空烧结泡沫304不锈钢吸声性能 [J]. 中国有色金属学报, 2017, 27: 2560
7 Avalle M, Belingardi G. A mechanical model of cellular solids for energy absorption [J]. Adv. Eng. Mater., 2019, 21: 1800457
8 Sazegaran H, Hojati M. Effects of copper content on microstructure and mechanical properties of open-cell steel foams [J]. Int. J. Miner. Metall. Mater., 2019, 26: 588
9 Zhang X W, Wang Y L, Chen L, et al. Mechanical properties of porous metal materials and their dependence on geometric parameters [J]. J. Mater. Eng., 2014, (2): 55
9 张晓伟, 王彦莉, 陈利等. 多孔金属介质的力学性能及其参数依赖性研究 [J]. 材料工程, 2014, (2): 55
10 Bekoz N, Oktay E. High temperature mechanical properties of low alloy steel foams produced by powder metallurgy [J]. Mater. Des., 2014, 53: 482
11 Smith B H, Szyniszewski S, Hajjar J F, et al. Steel foam for structures: A review of applications, manufacturing and material properties[J]. J. Constr. Steel Res., 2012, 71: 1
12 He S Y, Gong X L, He D P. Effect of through-hole on porous aluminum alloy compressive mechanical properties [J]. Chin. J. Mater. Res., 2009, 23: 380
12 何思渊, 龚晓路, 何德坪. 多孔铝合金连通孔对压缩性能的影响 [J]. 材料研究学报, 2009, 23: 380
13 Caiazzo F, Campanelli S L, Cardaropoli F, et al. Manufacturing and characterization of similar to foam steel components processed through selective laser melting [J]. Int. J. Adv. Manuf. Technol., 2017, 92: 2121
14 Bekoz N, Oktay E. Mechanical properties of low alloy steel foams: Dependency on porosity and pore size [J]. Mater. Sci. Eng., 2013, 576A: 82
15 Yang Q Z, Yu B, Zhao F X, et al. Research progress of steel foam by casting method [J]. China Foundry, 2011, 60: 851
15 杨全占, 于波, 赵芳欣等. 铸造法制备泡沫钢研究进展 [J]. 铸造, 2011, 60: 851
16 Wang H, Zhou X Y, Li C L, et al. Vacuum sintering of stainless steel foam with 3-D open-cell network structure [J]. J. Central South Univ. (Sci. Technol.), 2011, 42: 2178
16 王辉, 周向阳, 李昌林等. 真空烧结制备三维通孔不锈钢泡沫材料 [J]. 中南大学学报(自然科学版), 2011, 42: 2178
17 Xu X B, Liu P S, Chen G F, et al. Sound absorption performance of highly porous stainless steel foam with reticular structure [J]. Met. Mater. Int, 2020, (12): 1
18 Kayaa C, Fleck C. Deformation behavior of open-cell stainless steel foams [J]. Mater. Sci. Eng., 2014, 615A: 447-456
19 Xie F X, He X B, Cao S L, et al. Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering [J]. J. Mater. Process. Technol., 2013, 213: 838
20 Bakan H I. A novel water leaching and sintering process for manufacturing highly porous stainless steel [J]. Scr. Mater., 2006, 55: 203
21 Mondal D P, Jain H, Das S, et al. Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder [J]. Mater. Des., 2015, 88: 430
22 Hu L, Li L J, Peng H L, et al. Fabrication and properties of powder metallurgical porous high nitrogen austenitic stainless steel [J]. Chin. J. Mater. Res., 2019, 33: 345
22 胡玲, 李烈军, 彭翰林等. 粉末冶金多孔高氮奥氏体不锈钢的制备及性能 [J]. 材料研究学报, 2019, 33: 345
23 Mirzaei M, Paydar M H. Fabrication and characterization of core-shell density-graded 316L stainless steel porous structure [J]. J. Mater. Eng. Perform., 2018, 28: 221
24 Guo K S, Li M C, Gong Q, et al. Experimental investigation on steel foams fabricated by sintering-dissolution process [J]. Mater. Manuf. Processes, 2016, 31: 1597
25 Sun Y D, Zhou Y, Wang T Y, et al. Preparation process, compression and energy absorption properties of steel foams [J]. Mater. Sci. Technol., 2019, 27(5): 44
25 孙亚东, 周芸, 汪天尧等. 泡沫钢的制备及压缩吸能特性 [J]. 材料科学与工艺, 2019, 27(5): 44
26 Callister W D. Fundamentals of Materials Science and Engineering: An Interactive e.Text [M]. 5th ed. New York: John Wiley & Sons, Inc., 2001
27 Degischer H P, Kriszt B. Handbook of Cellular Metals: Production, Processing, Application [M]. Weinheim, Germany: Wiley-VCH, 2002
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.