材料研究学报, 2021, 35(8): 606-614 DOI: 10.11901/1005.3093.2020.553

研究论文

热处理对选区激光熔化17-4PH不锈钢力学性能的影响

秦奉1,2,3,4, 施麒2,3,4, 刘辛2,3,4, 周舸,1, 陈立佳1

1.沈阳工业大学材料科学与工程学院 沈阳 110870

2.广东省科学院材料与加工研究所 广州 510605

3.广东省金属强韧化技术与应用重点实验室 广州 510650

4.国家钛及稀有金属粉末冶金工程技术研究中心 广州 510650

Effect of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted 17-4PH Stainless Steel

QIN Feng1,2,3,4, SHI Qi2,3,4, LIU Xin2,3,4, ZHOU Ge,1, CHEN Lijia1

1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

2.Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510650, China

3.Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China

4.National Engineering Research Center of Powder Metallurgy of Titanium & Rare Metals, Guangzhou 510650, China

通讯作者: 周舸,副教授,zhouge@sut.edu.cn,研究方向为高性能金属材料3D打印粉末制备及构件力学性能研究

收稿日期: 2020-12-22   修回日期: 2021-04-08   网络出版日期: 2021-09-07

基金资助: 广东省自然科学基金.  2018A030313127

Corresponding authors: ZHOU Ge, Tel: 18602408585, E-mail:zhouge@sut.edu.cn

Received: 2020-12-22   Revised: 2021-04-08   Online: 2021-09-07

作者简介 About authors

秦奉,女,1996年生,硕士生

摘要

对选区激光熔化成形的17-4PH不锈钢分别进行真空热处理、热等静压高压淬火处理和组合热处理(热等静压固溶后快淬和马弗炉时效后水冷),在1040℃固溶处理2 h和在480℃时效4 h,观察其显微组织并研究了热处理对其力学性能的影响。结果表明,17-4PH不锈钢由回火马氏体和淬火马氏体组成,热处理后沉淀相弥散分布于晶粒内部,其颗粒尺寸为100~150 nm。真空热处理使合金内部孔隙的尺寸减小到3~7 μm,而热等静压使内部孔隙几乎完全闭合,使钢的密度基本上达到理论值。真空热处理+水淬使沉积态17-4PH不锈钢的抗拉强度和硬度都显著提高(分别提高到1300 MPa和448.5HV);热等静压在提高沉积态17-4PH不锈钢抗拉强度的同时使其延伸率显著提高到22.4%。断口分析结果表明,沉积态和热等静压样品的断口形貌为典型的韧性断裂,热等静压样品的韧窝更深、尺寸更大。真空热处理和组合热处理样品的断口形貌具有部分脆性断裂的特征且出现裂纹,与沉积态相比塑性略有降低。

关键词: 金属材料 ; 激光选区熔化 ; 热等静压 ; 17-4PH钢 ; 力学性能

Abstract

The laser selectively melted 17-4PH stainless steel was subjected to different post-heat treatment, i.e. vacuum heat treatment (1040℃/2 h+water quenching and 480℃/4 h+water quenching), hot isostatic pressing heat treatment (1040℃-150 MPa/2 h HIP +gas rapid cooling and vacuum 480℃-100 MPa/4 h+GRC) and combined heat treatment (1040℃-150 MPa/2 h HIP+GRC and vacuum 480℃/4 h+water quenching). Afterwards, the microstructure and mechanical performance of the laser melted steels were characterized by means of optical microscopy, electron scanning microscopy, microhardness tester and universal tensile tester. The results show that the vacuum heat treatment can reduce the inner pore size down to 3~7 μm. After hot isostatic pressing treatment, all pores almost closed and the density is almost of the theoretical value of the laser deposited 17-4PH stainless stee. After heat treatment, the 17-4PH stainless steel composed of tempered- and quenched-martensite, and the precipitates with size of 100~150 nm dispersed in grains. Vacuum heat treatment + water quenching can significantly increase the tensile strength and hardness of the deposited 17-4PH stainless steel to 1300 MPa and 448.5HV, respectively. Hot isostatic pressing heat treatment can significantly increase the tensile strength of the deposited 17-4PH stainless steel, at the same time, its elongation at break reaches 22.4%.The fracture morphology of the as deposited 17-4PH SS and the one after hot isostatic pressing heat treatment was typical ductile fracture, and the dimples of hot isostatic pressing heat treatment ones were larger in size and deeper in depth. The fracture morphologies of the deposited 17-4PH SS after vacuum heat treatment and combined heat treatment have the characteristics of partial brittle fracture and emergence of a few cracks, whilst who's plasticity decreases slightly, in comparison with that of the as deposited ones.

Keywords: metallic materials ; selective laser melting ; hot isostatic pressing ; 17-4PH steel ; mechanical properties

PDF (18310KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

秦奉, 施麒, 刘辛, 周舸, 陈立佳. 热处理对选区激光熔化17-4PH不锈钢力学性能的影响. 材料研究学报[J], 2021, 35(8): 606-614 DOI:10.11901/1005.3093.2020.553

QIN Feng, SHI Qi, LIU Xin, ZHOU Ge, CHEN Lijia. Effect of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted 17-4PH Stainless Steel. Chinese Journal of Materials Research[J], 2021, 35(8): 606-614 DOI:10.11901/1005.3093.2020.553

17-4PH不锈钢是一种马氏体沉淀硬化不锈钢,具有高强度、高硬度、较好的焊接性能和耐腐蚀性能,在航天航空、核工业、生物医疗以及石油化工等领域得到了广泛的应用[1~3]。制造17-4PH不锈钢零部件,通常采用铸造、热变形、机械加工等手段。近年来,选区激光熔化(Selective laser melting, SLM)这种增材制造技术,也用于制造形状复杂的金属零部件[4]。SLM以激光为能量源,用计算机辅助对金属粉末床逐层扫描以使其快速熔融和凝固,从而得到预设形状。成型后部件的优点,是晶粒细小、组织均匀和表面精度高 [5~7]

在17-4PH不锈钢的选区激光熔化成型过程中,激光参数、粉末特性以及后续热处理都影响其组织和性能[8~12]。Ponnusany等[8]研究了SLM过程中激光散焦距离对17-4PH不锈钢表面特性的影响。随着散焦距离由-6 mm减小至-4 mm零件表面的粗糙度降低,孔隙减少,显微硬度提高到414 HV;随着散焦距离继续减小至-3、-2和-1 mm表面粗糙度提高而显微硬度降低,即激光功率降低到85%散焦距离为-4 mm的零件具有最佳的表面粗糙度和显微硬度。Irrinki等[9]研究了水雾化和气雾化条件下17-4PH不锈钢粉末的SLM成形和材料的致密化。结果表明,在激光能量密度较低(64和80 J/mm3)的条件下使用气雾化和细粒径的水雾化粉末可得到较高的致密度(~97%),而使用粒径较粗的水雾化粉末的成形件其致密度较低(87%~92%);而在激光能量密度(84和104 J/mm3)较高的条件下,粉末粒度对致密度的影响较小。Sun等[10]指出,用SLM制备的17-4PH不锈钢中的氧化夹杂物主要来源于原料粉末,较粗的氧化夹杂物存在于激光熔池,使材料的疲劳和断裂性能产生各向异性,而较细小的夹杂物能抑制晶粒长大。Rashid等[11]证实,热处理可使SLM成形的17-4PH不锈钢中的回火马氏体主相均匀分布,使其硬度比锻造的高。Pasebahi等[12]指出,适当的热处理(1315℃固溶45 min、482℃时效1 h),能使水雾化17-4PH不锈钢粉末SLM成形材料达到与气雾化粉末成形件相当的性能。目前关于17-4PH不锈钢选区激光熔化成形的相关研究,主要是工艺参数优化、3D打印粉末质量的影响、热等静压(Hot isostatic pressing, HIP)致密化处理和常规热处理改性,旨在提高合金的综合力学性能[13-15]。本文优化17-4PH不锈钢的SLM成形工艺参数,对成形后的试样分别在热等静压设备中固溶时效、马弗炉中固溶时效、在热等静压设备中固溶和在马弗炉中时效,热处理制度均为1040℃固溶2 h、480℃时效4 h。观察实验后试样的微观组织并测试其力学性能,研究热处理对SLM成形17-4PH不锈钢的组织和性能的影响。

1 实验方法

用气雾化法制备实验用17-4PH不锈钢粉末,其松装密度为4.05 g/cm3、振实密度为4.17 g/cm3和霍尔流动性能为17.7 s/50 g。用SU8220型扫描电子显微镜(Scanning electron microscopy, SEM)观察粉末的形貌。使用Mastersizer 3000激光粒度仪测量粉末的粒径,使用Rigaku D2500 X射线衍射仪分析粉末物相。

使用EOS M 290设备进行选区激光熔化成形,以氩气为保护气氛,工艺参数列于表1。打印样品的尺寸为48.5 mm×11 mm×3.5 mm。将打印样品分为4组,其中1组为没有热处理的沉积态,其余三组分别进行真空热处理、热等静压热处理以及组合热处理。①真空热处理是将打印试样封入真空玻璃管后放入热处理炉中,在1040℃固溶2 h后水淬。然后再次用真空玻璃管将样品密封,在480℃时效4 h后水冷。②用QIH-15L型热等静压机进行HIP热处理(在氩气气氛下):升温升压至1040℃和150 MPa后保温保压2 h,然后用URQ气体进行快冷(冷却速度约等于油冷速度),随后在480℃、气压大于100 MPa条件下时效4 h,再用URQ气体快冷至室温。③组合热处理,使用热等静压设备在1040℃、150 MPa条件下固溶2 h,然后用URQ气体快冷至室温。再用真空玻璃管将样品密封在480℃热处理炉中进行4 h的时效,随后水冷。工艺的示意图,如图1所示。与传统热处理相比,热等静压热处理在保证设定温度的同时还设定热处理过程的压力值。设计这三种热处理工艺,为了研究热等静压热处理固溶阶段闭合孔隙对材料性能的影响和热等静压热处理时效阶段对17-4PH不锈钢组织性能的影响。

表1   选区激光熔化工艺参数

Table 1  Selective laser melting process parameters

Laser

power/W

Scanning speed

/mm·s-1

Layer

thickness/μm

Hatch

distance/μm

20075540110

新窗口打开| 下载CSV


图1

图1   选区激光熔化17-4PH不锈钢真空热处理、HIP热处理和组合热处理的工艺

Fig.1   Heat treatment processes of the SLM-processed 17-4PH stainless steels (a) vacuum heat treatment; (b) HIP heat treatment; (c) combined heat treatment


使用排水法测量样品的密度。采用DMI3000M型金相显微镜和SU8220型扫描电镜观察材料显微结构,所用腐蚀溶液为4 g CuSO4+20 mL HCl(浓度为36.5%)+20 mL H2O,腐蚀时间为10 s。使用Indentec ZHμ-S型硬度仪测量样品显微硬度,载荷为500 gf,加载时间为10 s。使用DNS200型万能拉伸试验机进行拉伸测试,拉伸样品的尺寸如图2所示,拉伸速度为1 mm/min。

图2

图2   拉伸试样的形状和尺寸

Fig.2   Geometry and dimensions of tensile specimens


2 结果和讨论

2.1 17-4PH不锈钢粉末的形貌和粒度

图3可见,多数粉末呈球形或近球形,少量呈棒状和卫星球状(图1中箭头所示)。

图3

图3   17-4 PH不锈钢粉末的形貌

Fig.3   Morphology of 17-4PH stainless steel powders


粉末D10,D50和D90的粒径分别为25.1 μm,35.8 μm和58.9 μm。粒度分布如图4a所示。这种粉末,具有体心立方结构(图4b)。

图4

图4   17-4 PH不锈钢原料粉末的粒度分布和X射线衍射谱

Fig.4   Particle size distribution (a) and X-ray diffraction spectrum (b) of initial powder of 17-4PH stainless steel


2.2 粉末样品的致密度

比较沉积态和经过不同热处理后的17-4PH不锈钢粉末样品的致密度,如图5所示。由图5可见,热处理在不同程度上提高了打印件的致密度,其中HIP处理对打印件致密度提高最为显著,样品基本上达到了理论密度,组合热处理的次之,真空热处理的效果不显著。

图5

图5   沉积态和热处理态17-4PH不锈钢的致密度

Fig.5   Relative densities of the as-built and heat treated 17-4PH stainless steel samples


图6给出了沉积态试样的上表面和侧面微观结构。可以看出,在试样的上表面熔池的轮廓清晰可见,熔池宽度约为100 μm,在熔池交接处出现孔隙 (图6a箭头所示)。其原因是,在激光作用下金属熔体在快速熔凝过程中未完全填充熔池。而逐层堆积的打印使该类孔隙保留在样品内部,如图6b所示,孔隙尺寸为5~10 μm。

图6

图6   沉积态17-4PH不锈钢试样的表面形貌和侧面微观孔隙

Fig.6   Top (a) and side (b) view morphology of the as-built 17-4PH stainless steel sample


图7a、b和c分别给出了真空热处理、HIP热处理和组合热处理后17-4PH不锈钢侧面的显微照片。与沉积(图6b)相比,真空热处理样品(图7a)的孔隙明显减少且其尺寸减小到3~7 μm;而经HIP热处理后样品内的孔隙基本消失(图7b);组合热处理后样品内的孔隙较为细小且分布弥散(图7c)。这些结果,与致密度测量的结果一致。这表明,样品致密度的提高主要是孔隙减少所致。样品在HIP过程中高温高压下受到各方向均匀的压力,孔隙基本上都闭合了。

图7

图7   选区激光熔化17-4PH不锈钢的真空热处理、HIP热处理和组合热处理态的侧面微观孔隙

Fig.7   Micro-pores of the SLM-processed 17-4PH stainless steels after different heat treatments (a) vacuum heat treatment; (b) HIP heat treatment; (c) combined heat treatment


2.3 相组成和微观组织

图8给出了17-4PH不锈钢沉积态和不同热处理态的X射线衍射谱。由图8可见,沉积态、真空热处理、HIP热处理和组合热处理的样品都为BCC结构,表明XRD谱不能区分材料是马氏体或铁素体。

图8

图8   沉积态和不同热处理态的选区激光熔化17-4PH不锈钢的X射线衍射谱

Fig.8   XRD spectra of the as-built and heat treated 17-4PH stainless steel samples


图9给出了17-4PH不锈钢沉积态的显微组织。可以看出,沉积态平行于构建方向(Building Direction, BD)呈现层状结构(图9a),层间距为50~100 μm,每层底部是白色淬火马氏体,顶部是黑色回火马氏体。激光打印后一层产生的热量一部分传到前一打印层的顶部,使其部分组织转变为回火马氏体。图9b给出了17-4PH不锈钢沉积态的微观组织,可见主要由马氏体及其晶界及内部析出的白色沉淀物组成。

图9

图9   选区激光熔化17-4PH不锈钢的光镜和扫描电镜照片

Fig.9   Optical microscopy (a) and SEM micrographs (b) of the SLM-processed 17-4PH stainless steel sample


图10给出了17-4PH不锈钢热处理后的微观组织,可见黑色回火马氏体和白色淬火马氏体呈板条状和块状均匀分布,层状结构消失,还有细小弥散的沉淀相。与其余两者相比,HIP热处理马氏体和沉淀相的尺寸较大。其原因是,时效冷却时HIP热处理高压气冷的冷却速度略低于其它热处理水冷的冷却速度,使其组织稍有长大。组合热处理的微观组织与真空热处理的相似,真空热处理的孔隙较多。其原因是,组合热处理固溶阶段在热等静压设备中进行,高温高压闭合了大部分孔隙,且热等静压气冷的冷却速度略低于水冷的冷却速度,使其组织的尺寸略大。

图10

图10   选区激光熔化17-4PH不锈钢真空热处理、HIP热处理和组合热处理后的微观组织

Fig.10   Micrographs of the SLM-17-4PH stainless steel (a) and (d) vacuum heat treatment; (b) and (d) HIP treatment; (c) and (f) combined heat treatment


为了进一步观察沉淀相颗粒的形貌,图11a给出了HIP热处理后样品TEM显微组织。可以看出,HIP热处理后合金晶粒内析出了球形沉淀相,其尺寸为100~150 nm,根据衍射花样分析为ε-Cu沉淀(图11b)。初生ε-Cu沉淀的尺寸为几纳米至十几纳米,与基体母相保持共格或半共格关系。随着沉淀的长大,共格关系被破坏其形貌发展为球形,对材料有沉淀强化作用。但是,随着沉淀相颗粒的长大其尺寸变大,部分沉淀的形貌转变为短棒状。这使其对位错的阻碍降低,对合金力学性能的增强效果也随之减小[13]

图11

图11   HIP热处理样品的TEM照片

Fig.11   HIP heat treated sample (a) TEM micrograph and (b) the corresponding selected area diffraction (SAD) pattern


2.4 17-4PH不锈钢的力学性能

图12给出了不同状态17-4PH不锈钢的显微硬度。可以看出,沉积态样品的显微硬度达到338.2 HV。与沉积态相比,真空热处理、组合热处理样品的显微硬度分别提高了110.3HV、140.7HV,而HIP处理样品的显微硬度与沉积态的相当。其原因是,在选区激光熔化成形过程中金属粉末熔凝较快,细小的组织使其硬度较高。经真空热处理和组合热处理后材料产生马氏体结构,组织内细小弥散的沉淀相阻碍位错运动,沉淀硬化使材料的硬度有较大的提高。同时,真空热处理和组合热处理样品的显微组织相似,组合热处理样品较高的显微硬度可归因于其较低的孔隙率。固溶阶段结束后,高压气冷至480℃,使HIP热处理样品的马氏体组织的尺寸比真空热处理和组合热处理的样品大。对比图10d、e、f,可见HIP热处理样品中沉淀颗粒的尺寸较大,用透射电镜观察到其尺寸为100~150 nm。沉淀相粗化,沉淀相之间的间距增大,对位错的交互作用减弱,沉淀硬化效果减弱,使HIP热处理样品的显微硬度比真空热处理和组合热处理样品的显微硬度低。

图12

图12   不同状态的选区激光熔化17-4PH不锈钢的显微硬度

Fig.12   Microhardness of the 17-4PH stainless steel samples under various conditions


图13给出了不同状态的17-4PH不锈钢的抗拉强度和延伸率。结合图12给出的结果可见,热处理后抗拉强度和显微硬度的变化趋势基本相同。真空热处理和组合热处理样品的抗拉强度比沉积态明显提高,因为二者都析出了大量细小弥散分布的沉淀相,阻碍了位错的运动。同时,组合热处理高温段的热等静压热处理使材料中的大部分孔隙闭合,使致密度提高,进而使其各项性能均优于真空热处理。但是,值得注意的是,与沉积态相比,HIP热处理不仅使抗拉强度提高了54 MPa,延伸率也提高到22.4%。其原因是HIP热处理样品中Cu沉淀的尺寸较大,对位错的钉扎作用减弱,其近乎全致密的高致密度也有利于塑形的提高。

图13

图13   不同状态的选区激光熔化17-4PH不锈钢的抗拉强度和延伸率

Fig.13   Ultimate tensile strengths and elongations of the 17-4PH stainless steels under various conditions


图14给出了不同状态的17-4PH不锈钢样品断口的整体形貌。可以看出,沉积态和HIP热处理样品断口的形貌均有明显的剪切唇和纤维区,断面较为平滑,为典型的韧性断裂形貌。真空热处理和组合热处理的样品,有明显的山脊状断裂形貌。

图14

图14   选区激光熔化17-4PH不锈钢沉积态、真空热处理、HIP热处理和组合热处理断口的整体形貌

Fig.14   Overall appearance of Fracture of the SLM-processed samples (a) as-built; (b) vacuum heat treatment; (c) HIP heat treatment; (d) combined heat treatment


不同状态17-4PH不锈钢样品断口的微观形貌,如图15所示。沉积态和HIP热处理样品具有韧窝-微孔聚集型断裂形貌,其断口形貌呈蜂窝状。其原因是,17-4PH不锈钢内部沉淀相在拉伸应力的作用下产生微孔进而形成韧窝,韧窝之间的连接导致断裂。与沉积态样品相比,HIP热处理的样品断口更为平滑,且韧窝的尺寸深度更大,说明HIP热处理有利于17-4PH不锈钢塑性的增强。如图15b、d所示,真空热处理和组合热处理样品为准解离断裂,断口形貌为韧窝和解离面结合,韧窝结构较少,出现较多的解离断面和裂纹,断口的微观形貌具有部分脆性断裂的特征。

图15

图15   选区激光熔化17-4PH不锈钢沉积态、真空热处理、HIP热处理和组合热处理后断口的形貌

Fig.15   Fractography of the SLM-processed 17-4PH stainless steel samples (a) as-built; (b) vacuum heat treatment; (c) HIP heat treatment; (d) combined heat treatment


3 结论

(1) 选区激光熔化成形17-4PH不锈钢内的孔隙在热等静压致密化处理后闭合,其密度基本上达到理论值。

(2) 选区激光熔化成形的17-4PH不锈钢的沉积态具有明显的层状结构,后续热处理后层状结构消失。合金的沉积态和各种热处理态主要为马氏体相,内部有弥散分布的沉淀相。经HIP热处理后,沉淀相的颗粒尺寸为100~150 nm。

(3) 真空热处理和组合热处理可提高材料的抗拉强度和硬度,但是断裂延伸率有所下降;HIP热处理使材料的抗拉强度略有提高,使其延伸率显著提高到22.4%。

(4) 沉积态和HIP热处理材料的断口形貌为典型的韧性断裂,韧窝更深、尺寸更大。真空热处理和组合热处理材料的断口形貌具有部分脆性断裂的特征且出现裂纹,与沉积态相比其塑性略有降低。

参考文献

Chen B, Chen H F, Wang Z M.

Present situation and development trend of 17-4PH stainless steel

[J]. Journal of Shanghai Institute of Technology (Natural Science)., 2016,16(01):83

[本文引用: 1]

陈贝, 陈惠芬, 王泽民.

17-4PH不锈钢的研究现状及发展趋势

[J]. 上海应用技术学院学报(自然科学版), 2016, 16(01): 83

[本文引用: 1]

Gu X L, Shi J G, Liu P, et al.

Study on selective laser melted 17-4 PH alloy

[J]. Mechanical Engineer., 2017(02): 69

顾小龙, 史金光, 刘平.

选择性激光熔化17-4PH合金的成形研究

[J]. 机械工程师, 2017(02): 69

Wang S, Lu Z J, Yang C G, et al.

Antibacterial performance of 17-4 PH stainless steel

[J]. Chinese Journal of Materials Research., 2014, 28(01): 15

[本文引用: 1]

王帅, 卢志江, 杨春光.

17-4PH不锈钢的抗菌性能

[J]. 材料研究学报, 2014, 28(01): 15

[本文引用: 1]

Yao Y S, Tang J P, Wang J, et al.

Study on forming technology and properties of 316L stainless steel by selective laser melting

[J]. Laser & Optoelectronics Progress., 2021, 58(01): 239

[本文引用: 1]

唐建平, 汪俊, 葛张森.

选区激光熔化316L不锈钢成形工艺与性能研究

[J]. 激光与光电子学进展, 2021, 58(01): 239

[本文引用: 1]

Liu B Q, Fang G, Lei L P.

An analytical model for rapid predicting molten pool geometry of selective laser melting (SLM)

[J]. Applied Mathematical Modelling., 2021, 92: 505

[本文引用: 1]

Ponnusamy P, Masood S H, Ruan D, et al.

Statistical analysis of porosity of 17-4PH alloy processed by selective laser melting

[J]. IOP Conference Series: Materials Science and Engineering., 2017, 220(1)

Zhou Y, Duan L C, Wu X L, et al.

Effect of powder particle size on wear and corrosion resistance of S136 mould steels fabricated by selective laser melting

[J]. Laser&Optoelectronics Progress., 2018,55(10): 205

[本文引用: 1]

周燕, 段隆臣, 吴雪良.

粉末粒径对激光选区熔化成形S136模具钢的磨损与抗腐蚀性能的影响

[J]. 激光与光电子学进展, 2018, 55(10): 205

[本文引用: 1]

Ponnusamy P, Masood S H, Palanisamy S, et al.

Characterization of 17-4PH alloy processed by selective laser melting

[J]. ScienceDirect., 2017, 4(8): 8498

[本文引用: 2]

Irrinki H, Jangam J S D, Pasebani S, et al.

Effects of particle characteristics on the microstructure and mechanical properties of 17-4 PH stainless steel fabricated by laser-powder bed fusion

[J]. Powder Technology., 2018, 331: 192

[本文引用: 1]

Sun Y, Hebert R J, Aindow M.

Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting

[J]. Materials and Design., 2018, 140: 153

[本文引用: 1]

Rashid R, Masood S H, Ruan D, et al.

Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM)

[J]. Journal of Materials Processing Tech., 2017, 249: 502

[本文引用: 1]

Pasebani S, Ghayoor M, Badwe S, et al.

Effects of atomizing media and post processing on mechanical properties of 17-4 PH stainless steel manufactured via selective laser melting

[J]. Additive Manufacturing., 2018, 22: 127

[本文引用: 2]

Du T, Chen J, Yuan C.

Effect of aging temperature on precipitation and hardening behavior of 17-4PH stainless steel

[J]. Hot Working Technology., 2015, 44(04): 233

[本文引用: 2]

杜涛, 陈军, 袁诚.

时效温度对17-4PH沉淀硬化不锈钢析出行为和硬化效果的影响

[J]. 热加工工艺, 2015, 44(04): 233

[本文引用: 2]

Brandon M, Brahmananda P, Andelle K, et al.

High strain rate compressive deformation behavior of an additively manufactured stainless steel

[J]. Additive Manufacturing., 2018, 24: 432

Irrinki H, Nath S D, Alhofors M, et al.

Microstructures, properties, and applications of laser sintered 17‐4PH stainless steel

[J]. Journal of the American Ceramic Society., 2019, 102(9): 5679

[本文引用: 1]

/