|
|
含钛氧化物弥散强化钢的微观组织和力学性能 |
谢锐1,2( ), 吕铮2, 徐长伟1, 王晴1, 刘春明2 |
1.沈阳建筑大学材料科学与工程学院 沈阳 110168 2.东北大学材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819 |
|
Microstructure Characterization and Tensile Properties of a Ti-bearing Oxide Dispersion Strengthened Steel |
XIE Rui1,2( ), LV Zheng2, XU Changwei1, WANG Qing1, LIU Chunming2 |
1.School of Materials Science and Technology, Shenyang Jianzhu University, Shenyang 110168, China 2.School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China |
引用本文:
谢锐, 吕铮, 徐长伟, 王晴, 刘春明. 含钛氧化物弥散强化钢的微观组织和力学性能[J]. 材料研究学报, 2022, 36(2): 99-106.
Rui XIE,
Zheng LV,
Changwei XU,
Qing WANG,
Chunming LIU.
Microstructure Characterization and Tensile Properties of a Ti-bearing Oxide Dispersion Strengthened Steel[J]. Chinese Journal of Materials Research, 2022, 36(2): 99-106.
1 |
Stork D , Agostini P , Boutard J L , et al . Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment [J]. J. Nucl. Mater., 2014, 455: 277
|
2 |
Odette G R , Alinger M J , Wirth B D . Recent developments in irradiation-resistant steels [J]. Annu. Rev. Mater. Res., 2008, 38: 471
|
3 |
Xie R , Lu Z , Lu C Y , et al . Microstructures and mechanical properties of 9Cr oxide dispersion strengthened steel produced by spark plasma sintering [J]. Fusion Eng. Des., 2017, 115: 67
|
4 |
Mazumder B , Parish C M , Bei H , et al . The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy [J]. J. Nucl. Mater., 2015, 465: 204
|
5 |
Zhang H T , Gorley M J , Chong K B , et al . An in situ powder neutron diffraction study of nano-precipitate formation during processing of oxide-dispersion-strengthened ferritic steels [J]. J. Alloys Compd., 2014, 582: 769
|
6 |
Hirata A , Fujita T , Liu C T , et al . Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM [J]. Acta Mater., 2012, 60: 5686
|
7 |
Alinger M J , Odette G R , Hoelzer D T . On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys [J]. Acta Mater., 2009, 57: 392
|
8 |
Xie R , Lu Z , Lu C Y , et al . Effects of mechanical alloying time on microstructure and properties of 9Cr-ODS steels [J]. J. Nucl. Mater., 2014, 455: 554
|
9 |
Chinnappan R . Thermodynamic stability of oxide phases of Fe-Cr based ODS steels via quantum mechanical calculations [J]. Calphad, 2014, 45: 188
|
10 |
Toualbi L , Ratti M , André G , et al . Use of neutron and X-ray diffraction to study the precipitation mechanisms of oxides in ODS materials [J]. J. Nucl. Mater., 2011, 417(1-3): 225
|
11 |
Ren J , Yu L M , Liu Y C , et al . Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600 °C [J]. Appl. Surf. Sci., 2019, 480: 969
|
12 |
Xu S , Zhou Z J , Long F , et al . Combination of back stress strengthening and Orowan strengthening in bimodal structured Fe-9Cr-Al ODS steel with high Al addition [J]. Mater. Sci. Eng., 2019, 739A: 45
|
13 |
Zhou X S , Ma Z Q , Yu L M , et al . Formation mechanisms of Y-Al-O complex oxides in 9Cr-ODS steels with Al addition [J]. J. Mater. Sci., 2019, 54: 7893
|
14 |
Mohan S , Kaur G , Panigrahi B K , et al . Effect of Zr and Al addition on nanocluster formation in oxide dispersion strengthened steel-An ab initio study [J]. J. Alloys Compd., 2018, 767: 122
|
15 |
Wu S J , Li J , Li W H , et al . Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS FeCrAl alloys [J]. J. Alloys Compd., 2020, 814, 152282
|
16 |
Ukai S , Harada M , Okada H , et al . Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials [J]. J. Nucl. Mater., 1993, 204: 65
|
17 |
Higgins M P , Lu C Y , Lu Z , et al . Crossover from disordered to core-shell structures of nano-oxide Y2O3 dispersed particles in Fe [J]. Appl. Phys. Lett., 2016, 109, 031911
|
18 |
Lu C Y , Lu Z , Wang X , et al . Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation [J]. Sci. Rep., 2017, 7: 40343
|
19 |
Li Z Y , Lu Z , Xie R , et al . Effect of spark plasma sintering temperature on microstructure and mechanical properties of 14Cr-ODS ferritic steels [J]. Mater. Sci. Eng., 2016, 660A: 52
|
20 |
Olier P , Malaplate J , Mathon M H , et al . Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages [J]. J. Nucl. Mater., 2012, 428: 40
|
21 |
Ratti M , Leuvrey D , Mathon M H , et al . Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials [J]. J. Nucl. Mater., 2009, 386-388: 540
|
22 |
Ohnuma M , Suzuki J , Ohtsuka S , et al . A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel [J]. Acta Mater., 2009, 57: 5571
|
23 |
Lu C Y . Microstructure and irradiation effect of nano-structural oxide dispersion strengthened steels [D]. Shenyang: Northeastern University, 2014
|
23 |
卢晨阳 . 纳米结构氧化物弥散强化钢的微观结构与辐照效应 [D]. 沈阳: 东北大学, 2014
|
24 |
Beaucage G . Particle size distributions from small-angle scattering using global scattering functions [J]. Journal of Applied Crystallography, 2004, 37: 523
|
25 |
Ilavsky J , Jemian P R . Irena: tool suite for modeling and analysis of small-angle scattering [J]. J. Appl. Crystallogr., 2009, 42: 347
|
26 |
Beaucage G . Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension [J]. J. Appl. Crystallogr., 1996, 29: 134
|
27 |
Li Y F , Abe H , Li F , et al . Grain structural characterization of 9Cr-ODS steel aged at 973 K up to 10,000 h by electron backscatter diffraction [J]. J. Nucl. Mater., 2014, 455: 568
|
28 |
Zilnyk K D , Oliveira V B , Sandim H R Z , et al . Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: a comparative study [J]. J. Nucl. Mater., 2015, 462: 360
|
29 |
Lu C Y , Lu Z , Xie R , et al . Effect of Y/Ti atomic ratio on microstructure of oxide dispersion strengthened alloys [J]. Mater. Charact., 2017, 134: 35
|
30 |
Murali D , Panigrahi B K , Valsakumar M C , et al . The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: an ab initio study [J]. J. Nucl. Mater., 2010, 403: 113
|
31 |
Guinier A , Fournet G , translated by Walker C B . Small-Angle Scattering of X-Rays [M]. New York: John Wiley and Sons Inc., 1955
|
32 |
Sakasegawa H , Legendre F , Boulanger L , et al . Stability of non-stoichiometric clusters in the MA957 ODS ferrtic alloy [J]. J. Nucl. Mater., 2011, 417: 229
|
33 |
Zhang X W . Effect of Y/Ti atomic ratio on microstructure and mechanical properties of nano-structured 9Cr-ODS steels [D]. Shenyang: Northeastern University, 2014
|
33 |
张小伟 . 不同Y/Ti原子比对纳米结构9Cr-ODS钢微观组织和力学性能的影响 [D]. 沈阳: 东北大学, 2014
|
34 |
Zhao Q , Yu L M , Liu Y C , et al . Morphology and structure evolution of Y2O3 nanoparticles in ODS steel powders during mechanical alloying and annealing [J]. Adv. Powder Technol., 2015, 26: 1578
|
35 |
Kim J H , Byun T S , Shin E , et al . Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion-strengthened steels produced via cryomilling [J]. J. Alloys Compd, 2015, 651: 363
|
36 |
Chauhan A , Litvinov D , de Carlan Y , et al . Study of the deformation and damage mechanisms of a 9Cr-ODS steel: microstructure evolution and fracture characteristics [J]. Mater. Sci. Eng., 2016, 658A: 123
|
37 |
Oksiuta Z , Lewandowska M , Kurzydłowski K J . Mechanical properties and thermal stability of nanostructured ODS RAF steels [J]. Mech. Mater., 2013, 67: 15
|
38 |
Li Y P . Investigation on preparation, microstructure and mechanical properties of nano-structured 9Cr-ODS steel [D]. Shenyang: Northeastern University, 2012
|
38 |
李云鹏 . 纳米结构9Cr-ODS钢的制备及其组织与性能的研究 [D]. 沈阳: 东北大学, 2012
|
39 |
Schneibel J H , Heilmaier M , Blum W , et al . Temperature dependence of the strength of fine- and ultrafine-grained materials [J]. Acta Mater., 2011, 59(3): 1300
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|