Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (2): 99-106    DOI: 10.11901/1005.3093.2020.492
  研究论文 本期目录 | 过刊浏览 |
含钛氧化物弥散强化钢的微观组织和力学性能
谢锐1,2(), 吕铮2, 徐长伟1, 王晴1, 刘春明2
1.沈阳建筑大学材料科学与工程学院 沈阳 110168
2.东北大学材料科学与工程学院 材料各向异性与织构教育部重点实验室 沈阳 110819
Microstructure Characterization and Tensile Properties of a Ti-bearing Oxide Dispersion Strengthened Steel
XIE Rui1,2(), LV Zheng2, XU Changwei1, WANG Qing1, LIU Chunming2
1.School of Materials Science and Technology, Shenyang Jianzhu University, Shenyang 110168, China
2.School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
引用本文:

谢锐, 吕铮, 徐长伟, 王晴, 刘春明. 含钛氧化物弥散强化钢的微观组织和力学性能[J]. 材料研究学报, 2022, 36(2): 99-106.
Rui XIE, Zheng LV, Changwei XU, Qing WANG, Chunming LIU. Microstructure Characterization and Tensile Properties of a Ti-bearing Oxide Dispersion Strengthened Steel[J]. Chinese Journal of Materials Research, 2022, 36(2): 99-106.

全文: PDF(2533 KB)   HTML
摘要: 

采用粉末冶金工艺制备了含Ti氧化物弥散强化钢。使用电子背散射衍射方式研究了这种钢的晶粒形貌,使用透射电镜和高分辨率透射电镜表征了钢中析出相的形貌及种类,使用以同步辐射装置作为光源的小角度X射线散射技术和X射线吸收精细结构技术研究了钢中纳米尺寸析出相的分布特征和氧化物弥散强化钢中Y元素的存在形式,并测量了钢的力学性能。结果表明,含Ti氧化物弥散强化钢的晶粒多呈等轴状、平均晶粒尺寸为1.24 μm。钢中富Y、Ti、O纳米尺寸析出相的分布密度为1.39×1024/m3,平均直径为2.23 nm。向材料中添加Ti元素改变了材料中Y原子的存在形式,生成了具有烧绿石结构的Y2Ti2O7相和少量的富Cr、Mn相。这种钢的室温抗拉强度达到1324 MPa,随着测试温度的提高抗拉强度逐渐降低,延伸率逐渐提高。

关键词 金属材料微观组织同步辐射氧化物弥散强化钢X射线吸收精细结构小角度X射线散射    
Abstract

An oxide dispersion strengthened (ODS) steel containing Ti was prepared by powder metallurgy. The grain morphology of the ODS steel was investigated by electron backscatter diffraction (EBSD). The morphology and types of precipitates in the ODS steel were characterized by transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM). The nano size precipitates of the ODS steel was investigated by small angle X-ray scattering (SAXS) technique and X-ray absorption fine structure (XAFS) technique using synchrotron radiation device. And the existence form of Y element in the ODS steel was examined by using XAFS technique. At the same time, the mechanical properties of the ODS steel were measured. The results show that the grains of the ODS steel are equiaxed, and the average grain size is 1.24×10-6 m. The spatial density of the nano-sized precipitates rich in O, Ti and Y of the steel is 1.39×10-24/m3, while the formed Y2Ti2O7 phase presents pyrochlore structure and a small amount of a phase rich in Cr and Mn was observed too. The tensile strength of the ODS steel reaches 1324 MPa at room temperature. With the increase of test temperature, the tensile strength of the material decreases, whereas the elongation increases gradually for the ODS steel.

Key wordsmetallic materials    microstructure    synchrotron radiation    oxide dispersion strengthened steel    X-ray absorption fine structure    small-angle x-ray scattering
收稿日期: 2020-11-19     
ZTFLH:  TB31  
基金资助:国家自然科学基金青年基金(51601031);兴辽英才计划(XLYC1902103)
作者简介: 谢锐,男,1984年生,博士
图1  福里茨Pulverisette P5型球磨机
图2  SAXS和XAFS同步辐射设备
图3  ODS钢的EBSD照片
图4  ODS钢中纳米尺寸析出相的明场像、暗场像和选区衍射斑点
图5  ODS钢样品的SAXS曲线和纳米尺寸析出相的分布曲线
SamplesSAXSTEM
D/nmN/m-3Dave/nmN/m-3[23]
Ti content2.231.39×10245.481.33×1023
表1  纳米尺寸氧化物的分布特征
图6  ODS钢中的Y2Ti2O7析出相的形貌像、傅里叶变换衍射斑点以及原子像
图7  ODS钢样品中Y2Ti2O7相的分布特征
图8  ODS钢的XAFX实验结果
图9  ODS钢中Cr2MnO4相的TEM照片
ElementMass fraction/%Atomic fraction/%
Si K5.8510.57
Ti K1.721.82
Cr K47.4446.36
Mn K21.2319.63
Fe K23.7621.62
Totals100.00
表2  Cr2MnO4相的能谱结果
图10  Cr2MnO4相的能谱
图11  ODS钢样品的拉伸性能
1 Stork D , Agostini P , Boutard J L , et al . Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment [J]. J. Nucl. Mater., 2014, 455: 277
2 Odette G R , Alinger M J , Wirth B D . Recent developments in irradiation-resistant steels [J]. Annu. Rev. Mater. Res., 2008, 38: 471
3 Xie R , Lu Z , Lu C Y , et al . Microstructures and mechanical properties of 9Cr oxide dispersion strengthened steel produced by spark plasma sintering [J]. Fusion Eng. Des., 2017, 115: 67
4 Mazumder B , Parish C M , Bei H , et al . The role of processing route on the microstructure of 14YWT nanostructured ferritic alloy [J]. J. Nucl. Mater., 2015, 465: 204
5 Zhang H T , Gorley M J , Chong K B , et al . An in situ powder neutron diffraction study of nano-precipitate formation during processing of oxide-dispersion-strengthened ferritic steels [J]. J. Alloys Compd., 2014, 582: 769
6 Hirata A , Fujita T , Liu C T , et al . Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM [J]. Acta Mater., 2012, 60: 5686
7 Alinger M J , Odette G R , Hoelzer D T . On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys [J]. Acta Mater., 2009, 57: 392
8 Xie R , Lu Z , Lu C Y , et al . Effects of mechanical alloying time on microstructure and properties of 9Cr-ODS steels [J]. J. Nucl. Mater., 2014, 455: 554
9 Chinnappan R . Thermodynamic stability of oxide phases of Fe-Cr based ODS steels via quantum mechanical calculations [J]. Calphad, 2014, 45: 188
10 Toualbi L , Ratti M , André G , et al . Use of neutron and X-ray diffraction to study the precipitation mechanisms of oxides in ODS materials [J]. J. Nucl. Mater., 2011, 417(1-3): 225
11 Ren J , Yu L M , Liu Y C , et al . Corrosion behavior of an Al added high-Cr ODS steel in supercritical water at 600 °C [J]. Appl. Surf. Sci., 2019, 480: 969
12 Xu S , Zhou Z J , Long F , et al . Combination of back stress strengthening and Orowan strengthening in bimodal structured Fe-9Cr-Al ODS steel with high Al addition [J]. Mater. Sci. Eng., 2019, 739A: 45
13 Zhou X S , Ma Z Q , Yu L M , et al . Formation mechanisms of Y-Al-O complex oxides in 9Cr-ODS steels with Al addition [J]. J. Mater. Sci., 2019, 54: 7893
14 Mohan S , Kaur G , Panigrahi B K , et al . Effect of Zr and Al addition on nanocluster formation in oxide dispersion strengthened steel-An ab initio study [J]. J. Alloys Compd., 2018, 767: 122
15 Wu S J , Li J , Li W H , et al . Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS FeCrAl alloys [J]. J. Alloys Compd., 2020, 814, 152282
16 Ukai S , Harada M , Okada H , et al . Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials [J]. J. Nucl. Mater., 1993, 204: 65
17 Higgins M P , Lu C Y , Lu Z , et al . Crossover from disordered to core-shell structures of nano-oxide Y2O3 dispersed particles in Fe [J]. Appl. Phys. Lett., 2016, 109, 031911
18 Lu C Y , Lu Z , Wang X , et al . Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation [J]. Sci. Rep., 2017, 7: 40343
19 Li Z Y , Lu Z , Xie R , et al . Effect of spark plasma sintering temperature on microstructure and mechanical properties of 14Cr-ODS ferritic steels [J]. Mater. Sci. Eng., 2016, 660A: 52
20 Olier P , Malaplate J , Mathon M H , et al . Chemical and microstructural evolution on ODS Fe-14CrWTi steel during manufacturing stages [J]. J. Nucl. Mater., 2012, 428: 40
21 Ratti M , Leuvrey D , Mathon M H , et al . Influence of titanium on nano-cluster (Y, Ti, O) stability in ODS ferritic materials [J]. J. Nucl. Mater., 2009, 386-388: 540
22 Ohnuma M , Suzuki J , Ohtsuka S , et al . A new method for the quantitative analysis of the scale and composition of nanosized oxide in 9Cr-ODS steel [J]. Acta Mater., 2009, 57: 5571
23 Lu C Y . Microstructure and irradiation effect of nano-structural oxide dispersion strengthened steels [D]. Shenyang: Northeastern University, 2014
23 卢晨阳 . 纳米结构氧化物弥散强化钢的微观结构与辐照效应 [D]. 沈阳: 东北大学, 2014
24 Beaucage G . Particle size distributions from small-angle scattering using global scattering functions [J]. Journal of Applied Crystallography, 2004, 37: 523
25 Ilavsky J , Jemian P R . Irena: tool suite for modeling and analysis of small-angle scattering [J]. J. Appl. Crystallogr., 2009, 42: 347
26 Beaucage G . Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension [J]. J. Appl. Crystallogr., 1996, 29: 134
27 Li Y F , Abe H , Li F , et al . Grain structural characterization of 9Cr-ODS steel aged at 973 K up to 10,000 h by electron backscatter diffraction [J]. J. Nucl. Mater., 2014, 455: 568
28 Zilnyk K D , Oliveira V B , Sandim H R Z , et al . Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: a comparative study [J]. J. Nucl. Mater., 2015, 462: 360
29 Lu C Y , Lu Z , Xie R , et al . Effect of Y/Ti atomic ratio on microstructure of oxide dispersion strengthened alloys [J]. Mater. Charact., 2017, 134: 35
30 Murali D , Panigrahi B K , Valsakumar M C , et al . The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: an ab initio study [J]. J. Nucl. Mater., 2010, 403: 113
31 Guinier A , Fournet G , translated by Walker C B . Small-Angle Scattering of X-Rays [M]. New York: John Wiley and Sons Inc., 1955
32 Sakasegawa H , Legendre F , Boulanger L , et al . Stability of non-stoichiometric clusters in the MA957 ODS ferrtic alloy [J]. J. Nucl. Mater., 2011, 417: 229
33 Zhang X W . Effect of Y/Ti atomic ratio on microstructure and mechanical properties of nano-structured 9Cr-ODS steels [D]. Shenyang: Northeastern University, 2014
33 张小伟 . 不同Y/Ti原子比对纳米结构9Cr-ODS钢微观组织和力学性能的影响 [D]. 沈阳: 东北大学, 2014
34 Zhao Q , Yu L M , Liu Y C , et al . Morphology and structure evolution of Y2O3 nanoparticles in ODS steel powders during mechanical alloying and annealing [J]. Adv. Powder Technol., 2015, 26: 1578
35 Kim J H , Byun T S , Shin E , et al . Small angle neutron scattering analyses and high temperature mechanical properties of nano-structured oxide dispersion-strengthened steels produced via cryomilling [J]. J. Alloys Compd, 2015, 651: 363
36 Chauhan A , Litvinov D , de Carlan Y , et al . Study of the deformation and damage mechanisms of a 9Cr-ODS steel: microstructure evolution and fracture characteristics [J]. Mater. Sci. Eng., 2016, 658A: 123
37 Oksiuta Z , Lewandowska M , Kurzydłowski K J . Mechanical properties and thermal stability of nanostructured ODS RAF steels [J]. Mech. Mater., 2013, 67: 15
38 Li Y P . Investigation on preparation, microstructure and mechanical properties of nano-structured 9Cr-ODS steel [D]. Shenyang: Northeastern University, 2012
38 李云鹏 . 纳米结构9Cr-ODS钢的制备及其组织与性能的研究 [D]. 沈阳: 东北大学, 2012
39 Schneibel J H , Heilmaier M , Blum W , et al . Temperature dependence of the strength of fine- and ultrafine-grained materials [J]. Acta Mater., 2011, 59(3): 1300
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.