Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (5): 349-356    DOI: 10.11901/1005.3093.2020.380
  研究论文 本期目录 | 过刊浏览 |
跑合过程引发钛合金水基润滑的超低摩擦特性
张会臣(), 漆雪莲
大连海事大学船舶与海洋工程学院 大连 116026
Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy
ZHANG Huichen(), QI Xuelian
Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
引用本文:

张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.
Huichen ZHANG, Xuelian QI. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. Chinese Journal of Materials Research, 2021, 35(5): 349-356.

全文: PDF(13296 KB)   HTML
摘要: 

以Ti6Al4V盘和Si3N4球为摩擦副、以魔芋葡甘聚糖溶液为润滑剂,使用多功能摩擦磨损试验机对比分析在干摩擦跑合和硼酸跑合条件下钛合金魔芋葡甘聚糖溶液水基润滑的摩擦特性,研究了跑合过程对钛合金水基润滑特性的影响。结果表明:在跑合过程中Si3N4球上形成的磨损区域是实现超低摩擦的关键,两种方式跑合后使用魔芋葡甘聚糖溶液润滑均可达到摩擦系数小于0.01的超低摩擦状态。干摩擦跑合后魔芋葡甘聚糖溶液的浓度较高,且在试验转速较高的条件下较强的流体动压效应可实现超低摩擦。硼酸跑合降低了摩擦副表面的粗糙度,且硼酸离子与魔芋葡甘聚糖分子中的羟基发生化学反应生成更加稳定的水合分子层,在魔芋葡甘聚糖溶液浓度较低的条件下依靠水合分子间的斥力仍可实现超低摩擦。

关键词 材料表面与界面超低摩擦跑合水基润滑钛合金    
Abstract

The influence of running-in process on friction characteristics of Ti-alloy by water-based lubrication process were investigated via CETR universal micro-tribometer (UMT-2) with Ti6Al4V disc and Si3N4 ball as tribo-pairs, konjac glucomannan (KGM) solutions as lubricant. The differences of the lubricating properties for Ti-alloy after dry friction and boric acid running-in process were analyzed. The results show that the wear area on the Si3N4 ball generated in the running-in process is the key factor that influenced the achieving of super-low friction. The super-low friction state (friction coefficient less than 0.01) could be acquired with KGM solution after both boric acid running-in and dry running-in. In the case of dry friction running-in, the super-low friction coefficient can be acquired only for the case with higher concentration KGM solutions and higher running speed, which mainly rely on the stronger hydrodynamic effect. In the case of boric acid running-in, the surface roughness of the tribo-pairs were greatly reduced, and the hydration layer of KGM was promoted by the chemical reactions between the boric acid and the KGM molecules. The super-low friction state could be achieved by the repulsive force between the hydrated KGM layers even for the solutions with low concentration of KGM.

Key wordssurface and interface in the materials    super-low friction    running-in process    water-based lubrication    titanium alloy
收稿日期: 2020-09-08     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51775077)
图1  魔芋蒲甘聚糖的分子结构
图2  干摩擦跑合使用0.5% KGM溶液润滑时的摩擦曲线
图3  干摩擦跑合后Si3N4球上的磨损区域
图4  更换新Si3N4球后的摩擦曲线
图5  使用不同浓度KGM溶液润滑时摩擦系数和对应的膜厚
图6  使用0.1% KGM溶液润滑时的摩擦曲线
Mass fraction/%0.10.20.30.40.50.60.70.80.91.0
Viscosity/mm2·s-126.0664.35115.63200.31420.58713.251026.481415.972056.562837.17
表1  不同浓度KGM溶液的粘度
图7  使用不同浓度KGM溶液润滑摩擦系数与转速的关系
图8  使用不同浓度的润滑液钛合金的表面形貌
图9  不同跑合方式下使用0.1%KGM溶液润滑时的摩擦曲线
图10  两种跑合方式下摩擦系数与浓度的关系
图11  不同跑合方式下Si3N4球的表面形貌
图12  不同跑合方式下钛合金表面的SEM照片和EDS分析
图13  KGM和KGM-硼酸的拉曼吸收谱
图14  不同粗糙度条件下的润滑模型
1 Ezugwu Emmanuel O., Rosemar Batista Da Silva, Wisley Falco Sales, et al. Overview of the machining of titanium alloys [J]. Encyclopedia of Sustainable Technologies, 2017, 487
2 Salguero J., Del Sol I., Vazquez-Martinez J. M., et al. Effect of laser parameters on the tribological behavior of Ti6Al4V titanium microtextures under lubricated conditions [J]. Wear, 2019, 426-227: 1272
3 Luo Y, Chen W W, Tian M C, al et, Thermal oxidation of Ti6Al4V alloy and its biotribological properties under serum lubrication [J]. Tribology International, 2015, 89: 67
4 Kaur Manmeet, Singh K.. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications [J]. Materials Science & Engineering C, 2019, 102: 844
5 Klein J. Hydration lubrication [J]. Friction, 2013, 1(1): 1
6 Duan Y Q, Liu Y H, Zhang C X, et al. Insight into the tribological behavior of liposomes in artificial joints [J]. Langmuir, 2016, 32(42): 10957
7 Wang K, Xiong D S, Niu Y X. Novel lubricated surface of titanium alloy based on porous structure and hydrophilic polymer brushes [J]. Applied Surface Science, 2014, 317: 875
8 Sheng Dezun, Zhang Huichen. Tribological properties of titanium alloy in water-based lubricating process of hydroxyethyl cellulose [J]. Rare Metal Materials and Engineering, 2019, 48(2): 509
8 盛德尊, 张会臣. 水合羟乙基纤维素润滑时钛合金的摩擦学特性 [J]. 稀有金属材料与工程, 2019, 48(2): 509
9 Yang Y, Zhang C H, Wang Y, et al. Friction and wear performance of titanium alloy against tungsten carbide lubricated with phosphate ester [J]. Tribology international, 2016, 95: 27
10 Yang Y, Zhang C H, Dai Y J, et al. Tribological properties of titanium alloy under lubrication of SEE oil and aqueous solutions [J]. Tribology international, 2017, 109: 40
11 Shirani Asghar, Nunn Nicholas, Shenderova Olga, et al. Nanodiamonds for improving lubrication of titanium surface in simulated body fluid [J]. Carbon, 2019, 143: 890
12 Zhang Y, Yu P H, Lin Y G, et al. Oleylamine/graphene-modified hydrotalcite-based film on titanium alloys and its lubricating properties [J]. Material letters, 2017, 193: 93
13 Luo Y, Yang L, Tian M C. Influence of bio-lubricants on the tribological properties of Ti6Al4V alloy [J]. Journal of bionic engineering, 2013, 10: 84
14 Banerjee S, Bhattacharya S. Food gels: gelling process and new applications [J]. Critical Reviews in Food Science and Nutrition, 2012, 52(4): 334
15 Huang Y C, Yang C Y, Chu H W, et al. Effect of alkali on konjac glucomannan film and its application on wound healing [J]. Cellulose, 2015, 22: 737
16 Shang X Y, Qin C G, Niu W N, et al. Studies and applications on konjac glucomannan as a new type of functional material [J]. Materials Review, 2009, 23: 32
17 Qi X L, Zhang Q Q, Sheng D Z, et al. Lubricating properties of water based lubricant of konjac glucomannan [J]. Chinese Journal of Materials Research, 2018, 32(1): 25
17 漆雪莲, 张倩倩, 盛德尊等. 魔芋葡甘聚糖溶液的水基润滑特性 [J]. 材料研究学报, 2018, 32(1): 25
18 Liu P X, Liu Y H, Yang Y, et al. Mechanism of biological liquid superlubricity of brasenia schreberi mucilage [J]. Langmuir, 2014, 30(13): 3811
19 Pang J, Sun Y J, Yang Y H, et al. Studies on hydrogen bonding network structures of konjac glucomannan [J]. Chinese journal of structural chemistry, 2008, 27(4): 431
20 Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: Part III—Fully flooded results [J]. Journal of Lubrication Technology, 1977, 99(2): 264
21 Wen S Z, Huang P. Principles of Tribology [M]. Beijing: Tsinghua University Press, 2002
21 温诗铸, 黄平. 摩擦学原理 [M]. 北京: 清华出版社, 2002
22 Gao S, Guo J, Nishinari K. Thermo reversible konjac glucomannan gel crosslinked by borax [J]. Carbohydrate polymers, 2008, 72(2): 315
23 Ratcliffe I, Williams P A, English R J, et al. Small strain deformation measurements of konjac glucomannan solutions and the influence of borate cross-linking [J]. Carbohydrate polymers, 2013, 95(1): 272
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 杜菲菲, 李超, 李显亮, 周尧尧, 阎庚旭, 李国建, 王强. 磁控溅射TiAlTaN/TaO/WS复合涂层及其钛合金的切削性能[J]. 材料研究学报, 2023, 37(4): 301-307.
[6] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[7] 张瑞雪, 马英杰, 贾焱迪, 黄森森, 雷家峰, 邱建科, 王平, 杨锐. 亚稳 β 钛合金热处理显微组织演变和元素再分配行为[J]. 材料研究学报, 2023, 37(3): 161-167.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[10] 王伟, 周山琦, 宫鹏辉, 张浩泽, 史亚鸣, 王快社. 退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响[J]. 材料研究学报, 2023, 37(1): 70-80.
[11] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[12] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[13] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[14] 蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
[15] 王俊, 王克鲁, 鲁世强, 李鑫, 欧阳德来, 邱仟, 高鑫, 张开铭. TA5钛合金的应变补偿物理本构模型和加工图[J]. 材料研究学报, 2022, 36(3): 175-182.