Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 301-307    DOI: 10.11901/1005.3093.2022.266
  研究论文 本期目录 | 过刊浏览 |
磁控溅射TiAlTaN/TaO/WS复合涂层及其钛合金的切削性能
杜菲菲1, 李超2,3, 李显亮2,4, 周尧尧2, 阎庚旭1, 李国建2(), 王强2
1.沈阳和世泰通用钛业有限公司 沈阳 110206
2.东北大学 材料电磁过程研究教育部重点实验室 沈阳 110819
3.东北大学冶金学院 沈阳 110819
4.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy
DU Feifei1, LI Chao2,3, LI Xianliang2,4, ZHOU Yaoyao2, YAN Gengxu1, LI Guojian2(), WANG Qiang2
1.Shenyang Heshitai General Titanium Industry Co. Ltd., Shenyang 110206, China
2.Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
3.School of Metallurgy, Northeastern University, Shenyang 110819, China
4.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

杜菲菲, 李超, 李显亮, 周尧尧, 阎庚旭, 李国建, 王强. 磁控溅射TiAlTaN/TaO/WS复合涂层及其钛合金的切削性能[J]. 材料研究学报, 2023, 37(4): 301-307.
Feifei DU, Chao LI, Xianliang LI, Yaoyao ZHOU, Gengxu YAN, Guojian LI, Qiang WANG. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. Chinese Journal of Materials Research, 2023, 37(4): 301-307.

全文: PDF(11058 KB)   HTML
摘要: 

用磁控溅射方法制备了低粘结TaO与低摩擦系数WS复合的TiAlTaN/TaO/WS复合涂层。该涂层由Ti过渡层、TiAlTaN耐磨层、TaO低粘结层和低摩擦系数WS层组成。涂层复合使表面形貌从多边形变为球形,但是不影响原涂层的相组成和柱状晶组织。复合涂层使原涂层的硬度和弹性模量降低,但是使摩擦系数从0.648降低到0.102。低摩擦系数复合涂层的润滑性能使切削钛合金的效率提高了84%,比商用涂层提高33%。

关键词 金属材料刀具涂层功能复合钛合金切削    
Abstract

In order to solve the problem of coating failure caused by cutting heat due to hard coatings with a high coefficient of friction (COF) when cutting titanium alloy, TiAl-TaN/TaO/WS composite coatings were prepared on cutters by magnetron sputtering. The coatings were composed of Ti buffer layer, TiAl-TaN layer with high wear resistance, TaO with low adhesive property and WS with low COF. The surface morphology of coatings changes from polyhedral granula (of TiAlTaN coating) to spherical granula (of composite coating), but the phase composition and columnar crystal structure of coatings are not affected. The composites can not only reduce the hardness and elastic modulus of the coatings, but also decrease the COF of the coatings from 0.648 of the TiAlN coatings to 0.102 of the composite coatings. Due to the low COF, the composite coatings show beneficial lubrication effect, the life of the cutters with composite coatings is 84% higher than that without coating and 33% higher than that with ordinary commercial coating respectively for cutting titanium alloy. Therefore, it provides a new tool coating that can be used for cutting titanium alloy.

Key wordsmetallic materials    tool coating    functional composite    titanium alloy cutting
收稿日期: 2022-05-09     
ZTFLH:  TG174.444  
基金资助:国防基础科研计划(JCKY2020110C004)
作者简介: 杜菲菲,女,1989年生,硕士
LayerFunctionTarget

Power

/ W

Temperature

/ oC

Thickness

/ nm

Pressure

/ Pa

O2 pressure

/ Pa

TiBuffer layerTi700500
Gradient TiAlTaNHard layerTiAl7003500
Ta4503503503×10-30
TaOLow adhesive wear layerTa1001600.15
WSLow friction coefficient layerWS1251200
表1  TiAlTaN/TaO/WS低粘结与自润滑功能复合涂层的沉积参数
图1  TiAlTaN复合涂层表面的SEM照片
图2  TiAlTaN复合涂层表面的EDS结果
图3  TiAlTaN/TaO/WS复合涂层截面的SEM照片和相应的EDS面扫描图
图4  TiAlTaN涂层、TiAlTaN/TaO复合涂层以及TiAlTaN/TaO/WS复合涂层的XRD谱和局部放大
图5  TiAlTaN/TaO/WS复合涂层划痕的SEM形貌和局部放大、划痕声信号和划痕区域的成分分析
图6  TiAlTaN涂层、TiAlTaN/TaO复合涂层、TiAlTaN/TaO/WS复合涂层的摩擦系数、硬度和弹性模量
图7  TiAlTaN/TaO复合涂层和TiAlTaN/TaO/WS复合涂层在25、50和100 g加载力下纳米压痕的SEM照片
图8  铣削钛合金速度为41 m/min时无涂层、商业化涂层和TiAlTaN/TaO/WS复合涂层刀具的切削距离和后刀面磨损的金相照片
1 Saini A, Pabla B S, Dhami S S. Developments in cutting tool technology in improving machinability of Ti6Al4V alloy: A review[J]. Proc. Inst. Mech. Eng., 2016, 230B(11) : 1977
2 Wang B, Liu Z Q, Cai Y K, et al. Advancements in material removal mechanism and surface integrity of high speed metal cutting: A review[J]. Int. J. Mach. Tools Manuf., 2021, 166: 103744
doi: 10.1016/j.ijmachtools.2021.103744
3 Choudhary A, Paul S. Performance evaluation of PVD TiAlN coated carbide tools vis-à-vis uncoated carbide tool in turning of titanium alloy (Ti-6Al-4V) by simultaneous minimization of cutting energy, dimensional deviation and tool wear[J]. Mach. Sci. Technol., 2019, 23(3): 368
doi: 10.1080/10910344.2018.1486421
4 Alhafian M R, Chemin J B, Fleming Y, et al. Comparison on the structural, mechanical and tribological properties of TiAlN coatings deposited by HiPIMS and Cathodic Arc Evaporation[J]. Surf. Coat. Technol., 2021, 423: 127529
doi: 10.1016/j.surfcoat.2021.127529
5 Veiga F, Arizmendi M, Jiménez A, et al. Analytical thermal model of orthogonal cutting process for predicting the temperature of the cutting tool with temperature-dependent thermal conductivity[J]. Int. J. Mech. Sci., 2021, 204: 106524
doi: 10.1016/j.ijmecsci.2021.106524
6 Akhtar S S. A critical review on self-lubricating ceramic-composite cutting tools[J]. Ceram. Int., 2021, 47(15): 20745
doi: 10.1016/j.ceramint.2021.04.094
7 Liu Z Q, An Q L, Xu J Y, et al. Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions[J]. Wear, 2013, 305(1-2): 249
doi: 10.1016/j.wear.2013.02.001
8 Li A H, Zhao J, Luo H B, et al. Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools[J]. Int. J. Adv. Manuf. Technol., 2012, 58(5-8): 465
doi: 10.1007/s00170-011-3408-1
9 Zhang W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide[J]. Adv. Colloid Interface Sci., 2022, 301: 102604
doi: 10.1016/j.cis.2022.102604
10 Erdemir A, Martin J M. Superior wear resistance of diamond and DLC coatings[J]. Curr. Opin. Solid State Mater. Sci., 2018, 22(6): 243
doi: 10.1016/j.cossms.2018.11.003
11 Gong H J, Yu C C, Zhang L, et al. Intelligent lubricating materials: a review[J]. Composites, 2020, 202B: 108450
12 Li X M, Deng J X, Lu Y, et al. Tribological behavior of ZrO2/WS2 coating surfaces with biomimetic shark-skin structure[J]. Ceram. Int., 2019, 45(17): 21759
doi: 10.1016/j.ceramint.2019.07.177
13 Serra E C, Soares V F D, Fernandez D A R, et al. Influence of WS2 content on high temperature wear performance of magnetron sputtered TiN-WS x thin films[J]. Ceram. Int., 2019, 45(16): 19918
doi: 10.1016/j.ceramint.2019.06.248
14 Li G J, Lü W Z, Liu S Y, et al. Multilayer-growth of TiAlN/WS self-lubricating composite coatings with high adhesion and their cutting performance on titanium alloy[J]. Composites, 2021, 211B: 108620
15 Chang S Y, Lin S Y, Huang Y C, et al. Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)N x multi-component coatings[J]. Surf. Coat. Technol., 2010, 204(20): 3307
doi: 10.1016/j.surfcoat.2010.03.041
16 Xue P D, Yang L, Diao D F. Nanocrystalline/amorphous biphase enhanced mechanical properties in multilayer carbon films[J]. Surf. Coat. Technol., 2018, 334: 1
doi: 10.1016/j.surfcoat.2017.10.061
17 Sui X D, Li G J, Jiang C J, et al. Effect of Ta content on microstructure, hardness and oxidation resistance of TiAlTaN coatings[J]. Int. J. Refract. Met. Hard Mater., 2016, 58: 152
doi: 10.1016/j.ijrmhm.2016.04.014
18 Kiryukhantsev-Korneev P V, Sytchenko A D, Gorshkov V A, et al. Complex study of protective Cr3C2-NiAl coatings deposited by vacuum electro-spark alloying, pulsed cathodic arc evaporation, magnetron sputtering, and hybrid technology[J]. Ceram. Int., 2022, 48(8): 10921
doi: 10.1016/j.ceramint.2021.12.311
19 Lü W Z, Li G J, Zhou Y Y, et al. Effect of high hardness and adhesion of gradient TiAlSiN coating on cutting performance of titanium alloy[J]. J. Alloys Compd., 2020, 820: 153137
doi: 10.1016/j.jallcom.2019.153137
20 Rodrigues S P, Evaristo M, Carvalho S, et al. Fluorine-carbon doping of WS-based coatings deposited by reactive magnetron sputtering for low friction purposes[J]. Appl. Surf. Sci., 2018, 445: 575
doi: 10.1016/j.apsusc.2018.03.113
21 Sui X D, Li G J, Jiang C J, et al. Improved toughness of layered architecture TiAlN/CrN coatings for titanium high speed cutting[J]. Ceram. Int., 2018, 44(5): 5629
doi: 10.1016/j.ceramint.2017.12.210
22 Grigoriev S, Vereschak A, Milovich F, et al. Investigation of the properties of Ti-TiN-(Ti, Al, Nb, Zr)N composite coating and its efficiency in increasing wear resistance of metal cutting tools[J]. Surf. Coat. Technol., 2021, 421: 127432
doi: 10.1016/j.surfcoat.2021.127432
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.