Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (1): 70-80    DOI: 10.11901/1005.3093.2022.103
  研究论文 本期目录 | 过刊浏览 |
退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响
王伟1,2(), 周山琦1, 宫鹏辉1, 张浩泽2,3, 史亚鸣2, 王快社1
1.西安建筑科技大学冶金工程学院 西安 710055
2.云南钛业股份有限公司 楚雄 651209
3.昆明理工大学材料科学与工程学院 昆明 650093
Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates
WANG Wei1,2(), ZHOU Shanqi1, GONG Penghui1, ZHANG Haoze2,3, SHI Yaming2, WANG Kuaishe1
1.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Yunnan Titanium Industry Co., Ltd, Chuxiong 651209, China
3.School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

王伟, 周山琦, 宫鹏辉, 张浩泽, 史亚鸣, 王快社. 退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响[J]. 材料研究学报, 2023, 37(1): 70-80.
Wei WANG, Shanqi ZHOU, Penghui GONG, Haoze ZHANG, Yaming SHI, Kuaishe WANG. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. Chinese Journal of Materials Research, 2023, 37(1): 70-80.

全文: PDF(9283 KB)   HTML
摘要: 

对用电子束冷床炉(EB炉)熔炼的TC4钛合金热轧板材进行三火轧制变形,研究了退火温度对其显微组织、织构和力学性能的影响。结果表明:TC4钛合金的原始轧态组织为双态组织,由初生α相和β转变组织构成。退火后等轴α相的含量提高,次生α相的含量降低并趋于球化,组织的等轴化程度提高,在900℃退火后合金的显微组织转变为等轴组织。随着退火温度的提高α相晶粒的偏聚方向发生了变化,织构类型由初始的B型织构转变为B型织构与T型织构的混合织构类型,最终再转变为B型织构。在800℃退火后α晶粒的择优取向最弱,其织构类型为B型织构和T型织构组成的混合织构,较强织构的成分为:φ2=0°截面,{0001}<31¯2¯0>和{0001}<98¯1¯0>;φ2=30°截面,{0001}<31¯2¯0>和{0001}<12¯10>。对材料进行室温和高温(400℃)拉伸实验,可得到TC4钛合金强度及塑性与退火温度间的关系:退火温度的提高使合金的抗拉强度提高、屈服强度降低、改善了塑性,合金屈强比的降低使其可靠性提高。

关键词 金属材料TC4钛合金织构退火力学性能电子束冷床熔炼    
Abstract

The effect of the anneal temperature on the microstructure, micro-texture and mechanical properties of the hot rolled Ti-6Al-4V alloy were investigated. The results show that the as rolled Ti-6Al-4V alloy presents a bimodal microstructure. The content of equiaxed α-phase increased after annealing. The content of secondary α-phase tented to decrease, whilst to be gradually spheroidized. The microstructure transformed into equiaxed structure after annealing at 900℃. With the increase of anneal temperature, the preferred orientation of α-phase were changed. Correspondingly, the micro-texture changed from B-type to mixed texture, then to B-type again. The crystal directions dispersed when the sample anneal at 800℃. The texture consisted of {0001}<31¯2¯0>, {0001}<98¯1¯0>, {0001}<31¯2¯0> and {0001}<12¯10>. The relationship between the mechanical performance and the annealing temperature were assessed via tensile tests. It follows that with the increased of annealing temperature, the tensile strength increased but the yield strength decreased, spontaneously, the ratio of yield strength to tensile strength decreased. In a word, the comprehensive mechanical properties of the alloy may be enhanced through proper annealing process.

Key wordsmetallic materials    TC4 titanium alloy    texture    annealing    mechanical properties    electron beam cooling bed smelting
收稿日期: 2022-02-21     
ZTFLH:  TG146.2+3  
基金资助:国家自然科学基金(51975450)
作者简介: 王伟,男,1985年生,博士
ComponentAlVFeCHO
Percentage (%, mass fraction)5.924.270.070.050.0040.4
表1  TC4钛合金主要元素含量
图1  TC4钛合金的退火热处理工艺
图2  TC4钛合金的取样示意图
图3  在不同温度退火的TC4钛合金的显微组织
图4  再结晶晶粒的分布
图5  在不同温度退火的TC4钛合金的反极图配色图
图6  α晶粒的取向差分布
图7  在不同温度退火的TC4钛合金的极图
图8  密排六方金属在φ2=0°和φ2=30°ODF截面上重要取向的组分及其位置[36]
图9  在不同温度退火的TC4钛合金的ODF图
图10  退火温度不同的TC4钛合金的室温拉伸性能
Alloy gradeStateThickness of plate/mmRm/MPaRp0.2/MPaA/%
TC4M0.8~2.0≥895≥83012
>2.0~5.010
>5.0~10.010
10.0~25.08
表2  GB/T3627-2007规定TC4板材室温力学性能
图11  退火温度不同的TC4钛合金的高温拉伸性能
Alloy gradeThickness of plate/mmTemperature/℃Rm/MPa
TC40.8~10400≥590
表3  GB/T3627-2007规定TC4板材高温力学性能
1 Xu J W, Zeng W D, Zhou D D, et al. Evolution of coordination between α and β phases for two-phase titanium alloy during hot working [J]. T. Nonferr. Metal. Soc., 2021, 31(11): 3428
doi: 10.1016/S1003-6326(21)65740-0
2 Xu G D, Wang F E. Development and application of high temperature titanium alloy [J]. Rare Met, 2008, 32(06): 774
2 许国栋, 王凤娥. 高温钛合金的发展和应用 [J]. 稀有金属, 2008, 32(06): 774
3 Li W, Gao N, Zhao H, et al. Crack initiation and early growth behavior of TC4 titanium alloy under high cycle fatigue and very high cycle fatigue [J]. Journal of Materials Research, 2018, 33(8): 1
doi: 10.1557/jmr.2017.478
4 Wang F Q, Wang X J, Bin D U, et al. Vacuum system design of electron beam cold hearth furnace for titanium and titanium alloy [J]. Vacuum, 2018
5 Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and Their Applications [M]. Chemical Industry Press, 2005
5 张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 化学工业出版社, 2005
6 Gupta R K, Kumar V A, Raj J N, et al. Hot Deformation Studies on β0 Stabilized TiAl Alloy Made Through Ingot Metallurgy Route [J]. Transactions of the Indian Institute of Metals, 2021
7 Yang Z, Cao J, Yu W, et al. Effects of microstructure characteristics on the mechanical properties and elastic modulus of a new Ti-6Al-2Nb-2Zr-0.4B alloy [J]. Materials Science and Engineering A, 2021, 820: 141564
doi: 10.1016/j.msea.2021.141564
8 Miao P, Li Q. Research progress of TC4 titanium alloy by electron beam melting [J]. Nonferrous Met. Mater. Eng., 2019, 40(6): 41
9 Jardy A. Thermal behavior of Ti-64 primary material in electron beam melting process [J]. Materials, 2021, 14(11): 2853
doi: 10.3390/ma14112853
10 Lei W G, Zhao Y Q, Han D, et al. Development status of titanium and titanium alloy melting technology [J]. MR, 2016, 30(05): 101
10 雷文光, 赵永庆, 韩 栋 等. 钛及钛合金熔炼技术发展现状 [J]. 材料导报, 2016, 30(05): 101
11 Zhang H Z, Huang H G, Wang W, et al. Volatilization loss of Al Element during electron beam cooling bed melting of Ti-Al-V alloy [J]. Rare Met. Mater. Eng, 2021, 50(07): 2415
11 张浩泽, 黄海广, 王 伟 等. 电子束冷床熔炼Ti-Al-V合金过程中Al元素的挥发损失 [J]. 稀有金属材料与工程, 2021, 50(07): 2415
12 Li Y X, Yang L C. 3150KWB BMO-01 high-power electron beam cooling bed furnace for melting TC4 titanium alloy [J]. Nonferrous Metals, Extractive Metallurgy, 2017(3): 4
12 李育贤, 杨丽春. 3150KWB BMO-01型大功率电子束冷床炉熔炼TC4钛合金 [J]. 有色金属: 冶炼部分, 2017(3): 4
13 Lei W G, Yu L L, Mao X N, et al. Numerical simulation of solidification process of continuous casting of TC4 titanium alloy melted by electron beam cooling bed [J]. Chin. J. of Nonferrous Met, 2010, 20(S1): 381
13 雷文光, 于兰兰, 毛小南 等. 电子束冷床熔炼TC4钛合金连铸凝固过程数值模拟 [J]. 中国有色金属学报, 2010, 20(S1): 381
14 Lei W G, Yu L L, Mao X N, et al. Mathematical model of Al volatilization loss during electron beam cooling bed smelting of TC4 titanium alloy [J]. Spec. Cast. Nonferrous Alloys, 2010, 30(11): 1048
14 雷文光, 毛小南, 于兰兰 等. TC4钛合金电子束冷床熔炼过程中Al元素挥发损失的数学模型 [J]. 特种铸造及有色合金, 2010, 30(11): 1048
15 Mao X N, Luo L, Yu L L, et al. Effect of electron beam cooling bed melting process parameters on the volatilization of Al element in TC4 titanium alloy [J]. Chin. J. of Nonferrous Met, 2010, 20(S1): 419
15 毛小南, 罗 雷, 于兰兰 等. 电子束冷床熔炼工艺参数对TC4钛合金Al元素挥发的影响 [J]. 中国有色金属学报, 2010, 20(S1): 419
16 Peng B. B., et al. Simulation study on temperature field and microstructure of Ti-6Al-4V alloy round ingot during EBCHM [J]. Materials Research Express 8. 4(2021): 046505
17 Liu Q, Li X, Jiang Y. Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process [J]. Vacuum, 2017, 141: 1
doi: 10.1016/j.vacuum.2017.03.009
18 Zhao S, Xiao H, Qin T C, et al. Microstructure and properties of TC4 titanium alloy hot-rolled sheet smelted in EB furnace [J]. Rare Met. Mater. Eng, 2019, 48(12): 4053
18 赵 帅, 肖 寒, 秦铁昌 等. EB炉熔炼TC4钛合金热轧板材的组织性能 [J]. 稀有金属材料与工程, 2019, 48(12): 4053
19 Akhonin S V, Trigub N P, Zamkov V N, et al. Mathematical modeling of aluminum evaporation during electron-beam cold-hearth melting of Ti6Al4V ingots [J]. Metall. Mater. Trans. B., 2003, 34(4): 447
20 Mo W, Wang Q J, Zhang Z. Metallology and Heat Treatment of Titanium [M]. Beijing: Metallurgical Industry Press, 2009
20 莫 畏, 王群娇, 张 翥. 钛的金属学和热处理 [M]. 北京: 冶金工业出版社, 2009
21 Wang J Y, Ge Z M, Zhou Y B, et al. Titanium Alloy for Aviation [M]. Shanghai: Shanghai Science and Technology Press, 1984
21 王金友, 葛志明, 周彦邦 等. 航空用钛合金 [M]. 上海: 上海科学技术出版社, 1984
22 Guo P, Zhao Y Q, Zeng W D. Effect of heat treatment in two-phase region on fracture toughness of TC4-DT titanium alloy [J]. Rare Met. Mater. Eng, 2018, 47(04): 1221
22 郭 萍, 赵永庆, 曾卫东. 两相区热处理对TC4-DT钛合金断裂韧性的影响 [J]. 稀有金属材料与工程, 2018, 47(04): 1221
23 Feng Q Y, Zhang Lei, Pang H, et al. Microstructure and properties of low-cost TC4 titanium alloy sheet [J]. Heat Treat. Met, 2016, 41(06): 85
23 冯秋元, 张 磊, 庞 洪 等. 低成本TC4钛合金板材的组织和性能 [J]. 金属热处理, 2016, 41(06): 85
24 Wang F Q, Wang D Y. Influence of heat treatment on mechanical properties of TC4 titanium alloy sheet for aviation [J]. T'ai Kung Yeh Chin Chan, 2017, 34(02): 24
24 王富强, 王德勇. 热处理对航空用TC4钛合金薄板力学性能影响研究 [J]. 钛工业进展, 2017, 34(02): 24
25 Xu W J, Tan Y Q, Gong L H, et al. Effects of annealing temperature and cooling rate on microstructure and properties of TC4 titanium alloy [J]. Rare Met. Mater. Eng, 2016, 45(11): 2932
25 徐戊矫, 谭玉全, 龚利华 等. 退火温度和冷却速率对TC4钛合金组织和性能的影响 [J]. 稀有金属材料与工程, 2016, 45(11): 2932
26 Zhang Q, Li B B, Pei T, et al. Effect of annealing temperature on microstructure and properties of low-cost TC4 titanium alloy wide and thick plate melted by EB [J]. Heat Treat. Met, 2020, 45(10): 73
26 张 强, 李渤渤, 裴 腾 等. 退火温度对EB熔炼低成本TC4钛合金宽厚板组织和性能的影响 [J]. 金属热处理, 2020, 45(10): 73
27 Lei W G, Han D, Zhang Y Q. Effects of different heat treatment processes on microstructure and properties of TC4-DT titanium alloy bars [J]. MR, 29(14): 120
27 雷文光, 韩 栋, 张永强 等. 不同热处理工艺对TC4-DT钛合金棒材组织和性能的影响 [J]. 材料导报, 2015, 29(14): 120
28 Kamali H, Xie H, Bi H, et al. Deformation mechanism and texture evolution of a low-Ni Cr-Mn-N austenitic stainless steel under bending deformation [J]. Mat. Sci. Eng. A-Struct., 2020, 804(10-11): 140724
doi: 10.1016/j.msea.2020.140724
29 Liu C M, Liu Z J, Zhu X R, et al. Research progress on dynamic recrystallization of magnesium and magnesium alloys [J]. Chin. J. of Nonferrous Met, 2006(01): 1
29 刘楚明, 刘子娟, 朱秀荣 等. 镁及镁合金动态再结晶研究进展 [J]. 中国有色金属学报, 2006(01): 1
30 Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81: 11
doi: 10.1016/S0254-0584(03)00168-8
31 Yang Y, Huang A J, Ji B, et al. Variant Selection of βα Phase Transformation in Titanium Alloys [C]. CNIA-TI, 2014
31 杨 义, 黄爱军, 计 波 等. 钛合金βα相变的变体选择 [C]. 中国有色金属工业协会钛锆铪分会会, 2014
32 Li W Y, Liu J R, Chen J Y, et al. Relationship between room temperature strength and microstructure and texture of Ti60 alloy sheet [J]. J. Mater. Res., 2018, 32(06): 455
32 李文渊, 刘建荣, 陈志勇 等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32(06): 455
33 Warwick J. L. W., Jones N. G., Bantounas I., Preuss M., Dye D.. In situ observation of texture and microstructure evolution during rolling and globularization of Ti-6Al-4V [J]. Acta. Mater., 2013, 61(5): 1603
doi: 10.1016/j.actamat.2012.11.037
34 Jiang H T, Dong P, Zeng S W, et al. Effects of recrystallization on microstructure and texture evolution of cold-rolled Ti-6Al-4V alloy [J]. Springer US, 2016, 25(5): 1931
35 Huang X S, Suzuki. K, Chino. Y. Static recrystallization behavior of hot-rolled Mg-Zn-Ce magnesium alloy sheet [J]. J. Alloy. Compd., 2017, 724: 981
doi: 10.1016/j.jallcom.2017.07.093
36 Mao W M, Yang P, Chen L. Material Texture Analysis Principle and Detection Technology [M]. Beijing: Metallurgical Industry Press, 2008
36 毛卫民, 杨 平, 陈 冷. 材料织构分析原理与检测技术 [M]. 北京: 冶金工业出版社, 2008
37 Guo T B, Ding Y T, Yuan X F, et al. Grain orientation evolution and texture fluctuation effect of pure copper during equal channel angular extrusion [J]. Chin. J. of Nonferrous Met, 2011, 21(02): 384
37 郭廷彪, 丁雨田, 袁训锋 等. 等通道角挤压中纯铜的晶粒取向演变及织构起伏效应 [J]. 中国有色金属学报, 2011, 21(02): 384
38 Dang P, Gao W N, Fu W J, et al. Effect of heat treatment on microstructure and properties of TC4 sheet [J]. Hot Working Technology, 2014, 43(18): 190
38 党 鹏, 高维娜, 付文杰 等. 热处理对TC4薄板组织与性能的影响 [J]. 热加工工艺, 2014, 43(18): 190
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.