Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 308-314    DOI: 10.11901/1005.3093.2022.232
  研究论文 本期目录 | 过刊浏览 |
基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金
陈志鹏1, 朱智浩1, 宋梦凡1, 张爽2, 刘田雨3, 董闯1,2()
1.大连理工大学 三束材料改性教育部重点实验室 大连 116024
2.大连交通大学材料科学与工程学院 大连 116028
3.沈阳铸造研究所有限公司 高端装备轻合金铸造技术国家重点实验室 沈阳 110022
An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula
CHEN Zhipeng1, ZHU Zhihao1, SONG Mengfan1, ZHANG Shuang2, LIU Tianyu3, DONG Chuang1,2()
1.Key Laboratory of Materials Modification, Ministry of Education, University of Technology, Dalian 116024, China
2.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
3.Shenyang Research Institute of Foundry Co., Ltd., State Key Laboratory of Light Alloy Casting Technology for High-End Equipment, Shenyang 110022, China
全文: PDF(6963 KB)   HTML
摘要: 

设计并用真空铜模吸铸制备了近α型双相Ti-Al-V-Mo-Nb-Zr合金系列,其成分框架满足Ti-6Al-4V的α+β双相团簇式,即αβ相团簇式的比例为12:5。同时,通过多元合金化尤其是改变Zr含量,可将后者改造成具有更高β稳定性的形式[Al-Ti14-x Zr x ](Mo0.6Nb0.2V1.2Al),x=0.6~3。这些合金的铸态组织其特征为网篮状,并含有大量针状α'马氏体。随着Zr含量的提高这些合金的晶粒细化,其强度和硬度也随之提高,Zr含量最高的Ti-6.7Al-2.2V-2.1Mo-0.7Nb-10.0Zr合金达到超高强水平,其铸态的拉伸强度为1404 MPa,维氏硬度为451HV,与热处理后的典型超高强钛合金β-21S的性能接近,与在相同条件下制备的Ti-6Al-4V相比其强度和硬度分别提高52%和39%,比强度和比硬度分别提高45%和33%。

关键词 金属材料钛合金Ti-Al-V-Mo-Nb-Zr团簇式力学性能    
Abstract

The near-α dual-phase Ti-Al-V-Mo-Nb-Zr alloy series were designed and prepared by copper-mold suction casting in this paper. Their compositions fall within the composition framework previously determined for Ti-6Al-4V: the α and β formulas satisfy the ratio of 12:5, but the β part can be further stabilized, by using multi-element alloying and especially by varying the addition amount of Zr, into the form of [Al-Ti14-x Zr x ](Mo0.6Nb0.2V1.2Al), x = 0.6~3. The as-cast alloys are all characterized by a basket-weave microstructure containing a large number of α' martensite needles. With increasing Zr content the α' needles are gradually refined, and the strength and hardness increase accordingly. Among them a Ti-6.7Al-2.2V-2.1Mo-0.7Nb-10.0Zr alloy achieves the ultra-high strength level, with the ultimate tensile strength of 1404 MPa and Vickers-hardness of 451HV, close to the typical ultra-high-strength β-21s after heat-treatment. In comparison with Ti-6Al-4V prepared in the identical conditions, the strength and hardness of this alloy exceeds those of Ti-6Al-4V by 52% and 39%, and the specific strength and hardness are increased by 45% and 33% respectively.

Key wordsmetallic materials    titanium alloy    Ti-Al-V-Mo-Nb-Zr    cluster formula    mechanical properties
收稿日期: 2022-04-24     
ZTFLH:  TG146.2+3  
基金资助:军委科技委2020年重点基础研究项目(2020JCJQZD165);大连市科技创新基金重点学科重大课题(2020JJ25CY004)
通讯作者: 董 闯,教授, dong@dlut.edu.cn,研究方向为材料的原子结构模型及成分设计   
Corresponding author: DONG Chuang, Tel:13998578449, E-mail: dong@dlut.edu.cn   
作者简介: 陈志鹏,男,1996年生,硕士生

引用本文:

陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula. Chinese Journal of Materials Research, 2023, 37(4): 308-314.

链接本文:

https://www.cjmr.org/CN/10.11901/1005.3093.2022.232      或      https://www.cjmr.org/CN/Y2023/V37/I4/308

图1  室温拉伸试样
AlloyComposition formula

Composition / %,

mass fraction

a[Mo]eqb[Al]eq

cΔTL-S

/ ℃

Ti-6Al-4V12[Al-Ti12](AlTi2)+5[Al-Ti14](V2Ti)Ti90.01Al6.05V3.942.76.013.3
Ti212[Al-Ti12](AlTi2)+5[Al-Ti13.4Zr0.6](AlV1.2Mo0.6Nb0.2)Ti85.7Al7.0Mo2.2Nb0.7V2.3Zr2.13.947.310.9
Ti412[Al-Ti12](AlTi2)+5[Al-Ti13Zr1](AlV1.2Mo0.6Nb0.2)Ti84.4Al6.9Mo2.2Nb0.7V2.3Zr3.53.917.518.3
Ti612[Al-Ti12](AlTi2)+5[Al-Ti12.4Zr1.6](AlV1.2Mo0.6Nb0.2)Ti82.4Al6.9Mo2.2Nb0.7V2.3Zr5.53.887.824.3
Ti712[Al-Ti12](AlTi2)+5[Al-Ti12Zr2](AlV1.2Mo0.6Nb0.2)Ti81.3Al6.8Mo2.1Nb0.7V2.3Zr6.83.858.026.6
Ti912[Al-Ti12](AlTi2)+5[Al-Ti11.4Zr2.6](AlV1.2Mo0.6Nb0.2)Ti79.4Al6.8Mo2.1Nb0.7V2.3Zr8.73.818.232.5
Ti1012[Al-Ti12](AlTi2)+5[Al-Ti11Zr3](AlV1.2Mo0.6Nb0.2)Ti78.3Al6.7Mo2.1Nb0.7V2.2Zr10.03.798.434.8
表1  Ti-6Al-4V和Ti-Al-V-Mo-Nb-Zr团簇式、质量百分比、当量以及估算的固液区间
图2  Zr含量不同的Ti-Al-V-Mo-Nb-Zr合金的光学形貌组织
AlloyTi2Ti4Ti6Ti7Ti9Ti10
Original grain size397±4357±20238±16207±11239±14372±16
α' martensite needles1±0.20.9±0.20.8±0.10.6±0.20.5±0.10.3±0.1
表2  不同Zr含量的铸态Ti-Al-V-Mo-Nb-Zr合金的原始晶粒和α'马氏体的尺寸
图3  不同Zr含量的Ti-Al-V-Mo-Nb-Zr铸态合金的SEM照片
图4  不同Zr含量的铸态Ti-Al-V-Mo-Nb-Zr合金的XRD衍射谱
图5  Ti-Al-V-Mo-Nb-Zr 合金的室温拉伸性能
图6  铸态Ti-Al-V-Mo-Nb-Zr 合金与国内外超高强度[4,5]和近α钛合金[3]室温拉伸性能的对比
图7  Ti-Al-V-Mo-Nb-Zr 合金的维氏硬度和密度以及比硬度(硬度/密度)和比强度(抗拉强度/密度)
1 Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective[J]. J. Aeronaut. Mater., 2014, 34(4): 1
1 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1
2 Xu G D, Wang F E. Development and application on high-temperature Ti-based alloys[J]. Chin. J. Rare Met., 2008, 32(6): 774
2 许国栋, 王凤娥. 高温钛合金的发展和应用[J]. 稀有金属, 2008, 32(6): 774
3 Zhao Y Q. Titanium industry progress[J]. Titanium Ind. Prog., 2001, (1): 33
3 赵永庆. 高温钛合金研究[J]. 钛工业进展, 2001, (1): 33
4 Shang G Q, Zhu Z S, Chang H, et al. Development of ultra-high strength titanium alloy[J]. Chin. J. Rare Met., 2011, 35(2): 286
4 商国强, 朱知寿, 常 辉 等. 超高强度钛合金研究进展[J]. 稀有金属, 2011, 35(2): 286
5 Zhang Z, Hui S X, Liu W. High strength and high toughness TB10 titanium alloy bars[J]. Chin. J. Rare Met., 2006, 30(2): 221
5 张 翥, 惠松骁, 刘 伟. 高强高韧TB10钛合金棒材研究[J]. 稀有金属, 2006, 30(2): 221
6 Chen W, Liu Y X, Li Z Q. Research status and development trend of high-strength β titanium alloys[J]. J. Aeronaut. Mater., 2020, 40(3): 63
6 陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报, 2020, 40(3): 63
7 Wang Q, Dong C, Liaw P K. Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α+β)] phase-boundary slopes[J]. Metall. Mater. Trans. A, 2015, 46 (8): 3440
doi: 10.1007/s11661-015-2923-3
8 Weiss I, Semiatin S L. Thermomechanical processing of alpha titanium alloys—an overview[J]. Mater. Sci. Eng. A, 1999, 263: 243
doi: 10.1016/S0921-5093(98)01155-1
9 Duan Y H, Wu Y, Peng M J, et al. The interstitial diffusion behaviors and mechanisms of boron in α-Ti and β-Ti: a first-principles calculation[J]. Comput. Mater. Sci., 2020, 184: 109866
doi: 10.1016/j.commatsci.2020.109866
10 Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications[M]. Weinheim: Wiley-VCH, John Wiley, 2003
11 Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design[J]. Acta Metall. Sin., 2018, 54: 293
11 董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54: 293
12 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65(5): 286
doi: 10.1080/09506608.2019.1638581
13 Liu T Y, Min X H, Zhang S, et al. Microstructures and mechanical properties of Ti-Al-V-Nb alloys with cluster formula manufactured by laser additive manufacturing[J]. Trans. Nonferrous Metals Soc. China, 2021, 31(10): 3012
doi: 10.1016/S1003-6326(21)65711-4
14 Wang Q, Ji C J, Wang Y M, et al. β-Ti alloys with low young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A(4): 1872
15 Che J D, Jiang B B, Wang Q, et al. Effects of minor Hf/Ta/Nb additions on high-temperature oxidation-resistant properties of near α-Ti alloys[J]. Chin. J. Nonferrous Met., 2016, 26: 2086
doi: 10.1016/S1003-6326(16)64288-7
15 车晋达, 姜贝贝, 王 清 等. 微量元素(Hf/Ta/Nb)添加对近α-Ti合金高温抗氧化性能的影响[J]. 中国有色金属学报, 2016, 26: 2086
16 Liu T Y, Zhang S, Wang Q, et al. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V[J]. Sci. China Technol. Sci., 2021, 64(8): 1732
doi: 10.1007/s11431-020-1812-9
17 Zhang T L, Zhu J M, Yang T, et al. A new α+β Ti-alloy with refined microstructures and enhanced mechanical properties in the as-cast state[J]. Scr. Mater., 2022, 207: 114260
doi: 10.1016/j.scriptamat.2021.114260
18 Jing R, Liang S X, Liu C Y, et al. Structure and mechanical properties of Ti-6Al-4V alloy after zirconium addition[J]. Mater. Sci. Eng. A, 2012, 552: 295
doi: 10.1016/j.msea.2012.05.043
19 Zhang Z X, Qu S J, Feng A H, et al. Achieving grain refinement and enhanced mechanical properties in Ti-6Al-4V alloy produced by multidirectional isothermal forging[J]. Mater. Sci. Eng., 2017, 692: 127
doi: 10.1016/j.msea.2017.03.024
20 Welsch G, Boyer R, Collings E W. Materials Properties Handbook: Titanium Alloys[M]. Materials Park: ASM International, 1994
21 Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength[J]. Nat. Commun., 2016, 7: 11176
doi: 10.1038/ncomms11176 pmid: 27034109
22 Chen Y. The microstructure and mechanical properties of Ti-Al-V-Fe-O low cost titanium alloy[D]. Harbin: Harbin Institute of Technology, 2014
22 陈 云. 低成本Ti-Al-V-Fe-O合金的组织和性能[D]. 哈尔滨: 哈尔滨工业大学, 2014
23 Murray J L. Phase Diagrams of Binary Titanium Alloys[M]. Materials Park: ASM International, 1987: 340
24 Zheng Y F, Williams R E A, Nag S, et al. The effect of alloy composition on instabilities in the β phase of titanium alloys[J]. Scr. Mater., 2016, 116: 49
doi: 10.1016/j.scriptamat.2016.01.024
25 Jiao Z G, Ma C, Fu J, et al. The effects of Zr contents on microstructure and properties of laser additive manufactured Ti-6.5Al-3.5Mo-0.3Si-xZr alloys[J]. J. Alloys Compd., 2018, 745: 592
doi: 10.1016/j.jallcom.2018.02.079
26 Fu B G, Wang H W, Zou C M, et al. The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys[J]. Mater. Charact., 2015, 99: 17
doi: 10.1016/j.matchar.2014.09.015
27 Mehjabeen A, Xu W, Qiu D, et al. Redefining the β-phase stability in Ti-Nb-Zr alloys for alloy design and microstructural prediction[J]. JOM, 2018, 70: 2254
doi: 10.1007/s11837-018-3010-1
28 Kitashima T, Suresh K S, Yamabe-Mitarai Y. Effect of germanium and silicon additions on the mechanical properties of a near-α titanium alloy[J]. Mater. Sci. Eng. A, 2014, 597: 212
doi: 10.1016/j.msea.2013.12.099
29 Zhan Y Z, Li C L, Jiang W P. β-type Ti-10Mo-1.25Si-xZr biomaterials for applications in hard tissue replacements[J]. Mater. Sci. Eng., 2012, 32C: 1664
30 Dai S J, Wang Y, Chen F, et al. Influence of Zr content on microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr alloys[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1299
doi: 10.1016/S1003-6326(13)62597-2
31 Min X H, Emura S, Zhang L, et al. Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys[J]. Mater. Sci. Eng. A, 2008, 497 (1-2): 74
doi: 10.1016/j.msea.2008.06.018
32 Hao Y L, Li S J, Sun S Y, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J]. Mater. Sci. Eng. A, 2006, 441 (1-2): 112
doi: 10.1016/j.msea.2006.09.051
33 Guo T. Effect of Zr on the microstructure and properties of short-term high temperature titanium alloys[D]. Harbin: Harbin Institute of Technology, 2017
33 郭 涛. Zr对短时高温钛合金组织和性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2017
34 Matsumoto H, Yoneda H, Fabregue D, et al. Mechanical behaviors of Ti-V-(Al, Sn) alloys with α′ martensite microstructure[J]. J. Alloys Compd., 2011, 509(6): 2684
doi: 10.1016/j.jallcom.2010.11.089
35 Mahdavi M, Standish M, Iskakov A, et al. Reduced-order models correlating Ti beta 21S microstructures and vickers hardness measurements[J]. Mater. Genome Eng., 2021, 1(1): 1
[1] 杜菲菲, 李超, 李显亮, 周尧尧, 阎庚旭, 李国建, 王强. 磁控溅射TiAlTaN/TaO/WS复合涂层及其钛合金的切削性能[J]. 材料研究学报, 2023, 37(4): 301-307.
[2] 李鹏宇, 刘子童, 亢淑梅, 陈姗姗. 等离子处理对医用镁合金表面聚合物防护涂层的影响[J]. 材料研究学报, 2023, 37(4): 271-280.
[3] 朱雪冬, 张爽, 邹存磊, 刘林根, 朱智浩, 万鹏, 董闯. Zr55Cu30Al10Ni5 块体金属玻璃的成分优化设计及其晶化行为[J]. 材料研究学报, 2023, 37(4): 281-290.
[4] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[5] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[6] 廖鸿宇, 贾咏馨, 苏睿明, 李广龙, 曲迎东, 李荣德. 回归时间对2024铝合金的组织和耐蚀性能的影响[J]. 材料研究学报, 2023, 37(4): 264-270.
[7] 张瑞雪, 马英杰, 贾焱迪, 黄森森, 雷家峰, 邱建科, 王平, 杨锐. 亚稳 β 钛合金热处理显微组织演变和元素再分配行为[J]. 材料研究学报, 2023, 37(3): 161-167.
[8] 董宇昂, 阳华杰, 贲丹丹, 马云瑞, 周相海, 王斌, 张鹏, 张哲峰. 液氮电脉冲处理超细晶316L不锈钢的低温拉伸性能[J]. 材料研究学报, 2023, 37(3): 168-174.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
[12] 于森, 陈乐利, 罗锐, 袁志钟, 王爽, 高佩, 程晓农. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(3): 211-218.
[13] 田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
[14] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[15] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.