|
|
基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金 |
陈志鹏1, 朱智浩1, 宋梦凡1, 张爽2, 刘田雨3, 董闯1,2( ) |
1.大连理工大学 三束材料改性教育部重点实验室 大连 116024 2.大连交通大学材料科学与工程学院 大连 116028 3.沈阳铸造研究所有限公司 高端装备轻合金铸造技术国家重点实验室 沈阳 110022 |
|
An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula |
CHEN Zhipeng1, ZHU Zhihao1, SONG Mengfan1, ZHANG Shuang2, LIU Tianyu3, DONG Chuang1,2( ) |
1.Key Laboratory of Materials Modification, Ministry of Education, University of Technology, Dalian 116024, China 2.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China 3.Shenyang Research Institute of Foundry Co., Ltd., State Key Laboratory of Light Alloy Casting Technology for High-End Equipment, Shenyang 110022, China |
引用本文:
陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
Zhipeng CHEN,
Zhihao ZHU,
Mengfan SONG,
Shuang ZHANG,
Tianyu LIU,
Chuang DONG.
An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. Chinese Journal of Materials Research, 2023, 37(4): 308-314.
1 |
Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective[J]. J. Aeronaut. Mater., 2014, 34(4): 1
|
1 |
王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1
|
2 |
Xu G D, Wang F E. Development and application on high-temperature Ti-based alloys[J]. Chin. J. Rare Met., 2008, 32(6): 774
|
2 |
许国栋, 王凤娥. 高温钛合金的发展和应用[J]. 稀有金属, 2008, 32(6): 774
|
3 |
Zhao Y Q. Titanium industry progress[J]. Titanium Ind. Prog., 2001, (1): 33
|
3 |
赵永庆. 高温钛合金研究[J]. 钛工业进展, 2001, (1): 33
|
4 |
Shang G Q, Zhu Z S, Chang H, et al. Development of ultra-high strength titanium alloy[J]. Chin. J. Rare Met., 2011, 35(2): 286
|
4 |
商国强, 朱知寿, 常 辉 等. 超高强度钛合金研究进展[J]. 稀有金属, 2011, 35(2): 286
|
5 |
Zhang Z, Hui S X, Liu W. High strength and high toughness TB10 titanium alloy bars[J]. Chin. J. Rare Met., 2006, 30(2): 221
|
5 |
张 翥, 惠松骁, 刘 伟. 高强高韧TB10钛合金棒材研究[J]. 稀有金属, 2006, 30(2): 221
|
6 |
Chen W, Liu Y X, Li Z Q. Research status and development trend of high-strength β titanium alloys[J]. J. Aeronaut. Mater., 2020, 40(3): 63
|
6 |
陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报, 2020, 40(3): 63
|
7 |
Wang Q, Dong C, Liaw P K. Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α+β)] phase-boundary slopes[J]. Metall. Mater. Trans. A, 2015, 46 (8): 3440
doi: 10.1007/s11661-015-2923-3
|
8 |
Weiss I, Semiatin S L. Thermomechanical processing of alpha titanium alloys—an overview[J]. Mater. Sci. Eng. A, 1999, 263: 243
doi: 10.1016/S0921-5093(98)01155-1
|
9 |
Duan Y H, Wu Y, Peng M J, et al. The interstitial diffusion behaviors and mechanisms of boron in α-Ti and β-Ti: a first-principles calculation[J]. Comput. Mater. Sci., 2020, 184: 109866
doi: 10.1016/j.commatsci.2020.109866
|
10 |
Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications[M]. Weinheim: Wiley-VCH, John Wiley, 2003
|
11 |
Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design[J]. Acta Metall. Sin., 2018, 54: 293
|
11 |
董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54: 293
|
12 |
Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65(5): 286
doi: 10.1080/09506608.2019.1638581
|
13 |
Liu T Y, Min X H, Zhang S, et al. Microstructures and mechanical properties of Ti-Al-V-Nb alloys with cluster formula manufactured by laser additive manufacturing[J]. Trans. Nonferrous Metals Soc. China, 2021, 31(10): 3012
doi: 10.1016/S1003-6326(21)65711-4
|
14 |
Wang Q, Ji C J, Wang Y M, et al. β-Ti alloys with low young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A(4): 1872
|
15 |
Che J D, Jiang B B, Wang Q, et al. Effects of minor Hf/Ta/Nb additions on high-temperature oxidation-resistant properties of near α-Ti alloys[J]. Chin. J. Nonferrous Met., 2016, 26: 2086
doi: 10.1016/S1003-6326(16)64288-7
|
15 |
车晋达, 姜贝贝, 王 清 等. 微量元素(Hf/Ta/Nb)添加对近α-Ti合金高温抗氧化性能的影响[J]. 中国有色金属学报, 2016, 26: 2086
|
16 |
Liu T Y, Zhang S, Wang Q, et al. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V[J]. Sci. China Technol. Sci., 2021, 64(8): 1732
doi: 10.1007/s11431-020-1812-9
|
17 |
Zhang T L, Zhu J M, Yang T, et al. A new α+β Ti-alloy with refined microstructures and enhanced mechanical properties in the as-cast state[J]. Scr. Mater., 2022, 207: 114260
doi: 10.1016/j.scriptamat.2021.114260
|
18 |
Jing R, Liang S X, Liu C Y, et al. Structure and mechanical properties of Ti-6Al-4V alloy after zirconium addition[J]. Mater. Sci. Eng. A, 2012, 552: 295
doi: 10.1016/j.msea.2012.05.043
|
19 |
Zhang Z X, Qu S J, Feng A H, et al. Achieving grain refinement and enhanced mechanical properties in Ti-6Al-4V alloy produced by multidirectional isothermal forging[J]. Mater. Sci. Eng., 2017, 692: 127
doi: 10.1016/j.msea.2017.03.024
|
20 |
Welsch G, Boyer R, Collings E W. Materials Properties Handbook: Titanium Alloys[M]. Materials Park: ASM International, 1994
|
21 |
Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength[J]. Nat. Commun., 2016, 7: 11176
doi: 10.1038/ncomms11176
pmid: 27034109
|
22 |
Chen Y. The microstructure and mechanical properties of Ti-Al-V-Fe-O low cost titanium alloy[D]. Harbin: Harbin Institute of Technology, 2014
|
22 |
陈 云. 低成本Ti-Al-V-Fe-O合金的组织和性能[D]. 哈尔滨: 哈尔滨工业大学, 2014
|
23 |
Murray J L. Phase Diagrams of Binary Titanium Alloys[M]. Materials Park: ASM International, 1987: 340
|
24 |
Zheng Y F, Williams R E A, Nag S, et al. The effect of alloy composition on instabilities in the β phase of titanium alloys[J]. Scr. Mater., 2016, 116: 49
doi: 10.1016/j.scriptamat.2016.01.024
|
25 |
Jiao Z G, Ma C, Fu J, et al. The effects of Zr contents on microstructure and properties of laser additive manufactured Ti-6.5Al-3.5Mo-0.3Si-xZr alloys[J]. J. Alloys Compd., 2018, 745: 592
doi: 10.1016/j.jallcom.2018.02.079
|
26 |
Fu B G, Wang H W, Zou C M, et al. The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys[J]. Mater. Charact., 2015, 99: 17
doi: 10.1016/j.matchar.2014.09.015
|
27 |
Mehjabeen A, Xu W, Qiu D, et al. Redefining the β-phase stability in Ti-Nb-Zr alloys for alloy design and microstructural prediction[J]. JOM, 2018, 70: 2254
doi: 10.1007/s11837-018-3010-1
|
28 |
Kitashima T, Suresh K S, Yamabe-Mitarai Y. Effect of germanium and silicon additions on the mechanical properties of a near-α titanium alloy[J]. Mater. Sci. Eng. A, 2014, 597: 212
doi: 10.1016/j.msea.2013.12.099
|
29 |
Zhan Y Z, Li C L, Jiang W P. β-type Ti-10Mo-1.25Si-xZr biomaterials for applications in hard tissue replacements[J]. Mater. Sci. Eng., 2012, 32C: 1664
|
30 |
Dai S J, Wang Y, Chen F, et al. Influence of Zr content on microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr alloys[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1299
doi: 10.1016/S1003-6326(13)62597-2
|
31 |
Min X H, Emura S, Zhang L, et al. Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys[J]. Mater. Sci. Eng. A, 2008, 497 (1-2): 74
doi: 10.1016/j.msea.2008.06.018
|
32 |
Hao Y L, Li S J, Sun S Y, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J]. Mater. Sci. Eng. A, 2006, 441 (1-2): 112
doi: 10.1016/j.msea.2006.09.051
|
33 |
Guo T. Effect of Zr on the microstructure and properties of short-term high temperature titanium alloys[D]. Harbin: Harbin Institute of Technology, 2017
|
33 |
郭 涛. Zr对短时高温钛合金组织和性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2017
|
34 |
Matsumoto H, Yoneda H, Fabregue D, et al. Mechanical behaviors of Ti-V-(Al, Sn) alloys with α′ martensite microstructure[J]. J. Alloys Compd., 2011, 509(6): 2684
doi: 10.1016/j.jallcom.2010.11.089
|
35 |
Mahdavi M, Standish M, Iskakov A, et al. Reduced-order models correlating Ti beta 21S microstructures and vickers hardness measurements[J]. Mater. Genome Eng., 2021, 1(1): 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|