Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 308-314    DOI: 10.11901/1005.3093.2022.232
  研究论文 本期目录 | 过刊浏览 |
基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金
陈志鹏1, 朱智浩1, 宋梦凡1, 张爽2, 刘田雨3, 董闯1,2()
1.大连理工大学 三束材料改性教育部重点实验室 大连 116024
2.大连交通大学材料科学与工程学院 大连 116028
3.沈阳铸造研究所有限公司 高端装备轻合金铸造技术国家重点实验室 沈阳 110022
An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula
CHEN Zhipeng1, ZHU Zhihao1, SONG Mengfan1, ZHANG Shuang2, LIU Tianyu3, DONG Chuang1,2()
1.Key Laboratory of Materials Modification, Ministry of Education, University of Technology, Dalian 116024, China
2.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
3.Shenyang Research Institute of Foundry Co., Ltd., State Key Laboratory of Light Alloy Casting Technology for High-End Equipment, Shenyang 110022, China
引用本文:

陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
Zhipeng CHEN, Zhihao ZHU, Mengfan SONG, Shuang ZHANG, Tianyu LIU, Chuang DONG. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. Chinese Journal of Materials Research, 2023, 37(4): 308-314.

全文: PDF(6963 KB)   HTML
摘要: 

设计并用真空铜模吸铸制备了近α型双相Ti-Al-V-Mo-Nb-Zr合金系列,其成分框架满足Ti-6Al-4V的α+β双相团簇式,即αβ相团簇式的比例为12:5。同时,通过多元合金化尤其是改变Zr含量,可将后者改造成具有更高β稳定性的形式[Al-Ti14-x Zr x ](Mo0.6Nb0.2V1.2Al),x=0.6~3。这些合金的铸态组织其特征为网篮状,并含有大量针状α'马氏体。随着Zr含量的提高这些合金的晶粒细化,其强度和硬度也随之提高,Zr含量最高的Ti-6.7Al-2.2V-2.1Mo-0.7Nb-10.0Zr合金达到超高强水平,其铸态的拉伸强度为1404 MPa,维氏硬度为451HV,与热处理后的典型超高强钛合金β-21S的性能接近,与在相同条件下制备的Ti-6Al-4V相比其强度和硬度分别提高52%和39%,比强度和比硬度分别提高45%和33%。

关键词 金属材料钛合金Ti-Al-V-Mo-Nb-Zr团簇式力学性能    
Abstract

The near-α dual-phase Ti-Al-V-Mo-Nb-Zr alloy series were designed and prepared by copper-mold suction casting in this paper. Their compositions fall within the composition framework previously determined for Ti-6Al-4V: the α and β formulas satisfy the ratio of 12:5, but the β part can be further stabilized, by using multi-element alloying and especially by varying the addition amount of Zr, into the form of [Al-Ti14-x Zr x ](Mo0.6Nb0.2V1.2Al), x = 0.6~3. The as-cast alloys are all characterized by a basket-weave microstructure containing a large number of α' martensite needles. With increasing Zr content the α' needles are gradually refined, and the strength and hardness increase accordingly. Among them a Ti-6.7Al-2.2V-2.1Mo-0.7Nb-10.0Zr alloy achieves the ultra-high strength level, with the ultimate tensile strength of 1404 MPa and Vickers-hardness of 451HV, close to the typical ultra-high-strength β-21s after heat-treatment. In comparison with Ti-6Al-4V prepared in the identical conditions, the strength and hardness of this alloy exceeds those of Ti-6Al-4V by 52% and 39%, and the specific strength and hardness are increased by 45% and 33% respectively.

Key wordsmetallic materials    titanium alloy    Ti-Al-V-Mo-Nb-Zr    cluster formula    mechanical properties
收稿日期: 2022-04-24     
ZTFLH:  TG146.2+3  
基金资助:军委科技委2020年重点基础研究项目(2020JCJQZD165);大连市科技创新基金重点学科重大课题(2020JJ25CY004)
作者简介: 陈志鹏,男,1996年生,硕士生
图1  室温拉伸试样
AlloyComposition formula

Composition / %,

mass fraction

a[Mo]eqb[Al]eq

cΔTL-S

/ ℃

Ti-6Al-4V12[Al-Ti12](AlTi2)+5[Al-Ti14](V2Ti)Ti90.01Al6.05V3.942.76.013.3
Ti212[Al-Ti12](AlTi2)+5[Al-Ti13.4Zr0.6](AlV1.2Mo0.6Nb0.2)Ti85.7Al7.0Mo2.2Nb0.7V2.3Zr2.13.947.310.9
Ti412[Al-Ti12](AlTi2)+5[Al-Ti13Zr1](AlV1.2Mo0.6Nb0.2)Ti84.4Al6.9Mo2.2Nb0.7V2.3Zr3.53.917.518.3
Ti612[Al-Ti12](AlTi2)+5[Al-Ti12.4Zr1.6](AlV1.2Mo0.6Nb0.2)Ti82.4Al6.9Mo2.2Nb0.7V2.3Zr5.53.887.824.3
Ti712[Al-Ti12](AlTi2)+5[Al-Ti12Zr2](AlV1.2Mo0.6Nb0.2)Ti81.3Al6.8Mo2.1Nb0.7V2.3Zr6.83.858.026.6
Ti912[Al-Ti12](AlTi2)+5[Al-Ti11.4Zr2.6](AlV1.2Mo0.6Nb0.2)Ti79.4Al6.8Mo2.1Nb0.7V2.3Zr8.73.818.232.5
Ti1012[Al-Ti12](AlTi2)+5[Al-Ti11Zr3](AlV1.2Mo0.6Nb0.2)Ti78.3Al6.7Mo2.1Nb0.7V2.2Zr10.03.798.434.8
表1  Ti-6Al-4V和Ti-Al-V-Mo-Nb-Zr团簇式、质量百分比、当量以及估算的固液区间
图2  Zr含量不同的Ti-Al-V-Mo-Nb-Zr合金的光学形貌组织
AlloyTi2Ti4Ti6Ti7Ti9Ti10
Original grain size397±4357±20238±16207±11239±14372±16
α' martensite needles1±0.20.9±0.20.8±0.10.6±0.20.5±0.10.3±0.1
表2  不同Zr含量的铸态Ti-Al-V-Mo-Nb-Zr合金的原始晶粒和α'马氏体的尺寸
图3  不同Zr含量的Ti-Al-V-Mo-Nb-Zr铸态合金的SEM照片
图4  不同Zr含量的铸态Ti-Al-V-Mo-Nb-Zr合金的XRD衍射谱
图5  Ti-Al-V-Mo-Nb-Zr 合金的室温拉伸性能
图6  铸态Ti-Al-V-Mo-Nb-Zr 合金与国内外超高强度[4,5]和近α钛合金[3]室温拉伸性能的对比
图7  Ti-Al-V-Mo-Nb-Zr 合金的维氏硬度和密度以及比硬度(硬度/密度)和比强度(抗拉强度/密度)
1 Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective[J]. J. Aeronaut. Mater., 2014, 34(4): 1
1 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1
2 Xu G D, Wang F E. Development and application on high-temperature Ti-based alloys[J]. Chin. J. Rare Met., 2008, 32(6): 774
2 许国栋, 王凤娥. 高温钛合金的发展和应用[J]. 稀有金属, 2008, 32(6): 774
3 Zhao Y Q. Titanium industry progress[J]. Titanium Ind. Prog., 2001, (1): 33
3 赵永庆. 高温钛合金研究[J]. 钛工业进展, 2001, (1): 33
4 Shang G Q, Zhu Z S, Chang H, et al. Development of ultra-high strength titanium alloy[J]. Chin. J. Rare Met., 2011, 35(2): 286
4 商国强, 朱知寿, 常 辉 等. 超高强度钛合金研究进展[J]. 稀有金属, 2011, 35(2): 286
5 Zhang Z, Hui S X, Liu W. High strength and high toughness TB10 titanium alloy bars[J]. Chin. J. Rare Met., 2006, 30(2): 221
5 张 翥, 惠松骁, 刘 伟. 高强高韧TB10钛合金棒材研究[J]. 稀有金属, 2006, 30(2): 221
6 Chen W, Liu Y X, Li Z Q. Research status and development trend of high-strength β titanium alloys[J]. J. Aeronaut. Mater., 2020, 40(3): 63
6 陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报, 2020, 40(3): 63
7 Wang Q, Dong C, Liaw P K. Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α+β)] phase-boundary slopes[J]. Metall. Mater. Trans. A, 2015, 46 (8): 3440
doi: 10.1007/s11661-015-2923-3
8 Weiss I, Semiatin S L. Thermomechanical processing of alpha titanium alloys—an overview[J]. Mater. Sci. Eng. A, 1999, 263: 243
doi: 10.1016/S0921-5093(98)01155-1
9 Duan Y H, Wu Y, Peng M J, et al. The interstitial diffusion behaviors and mechanisms of boron in α-Ti and β-Ti: a first-principles calculation[J]. Comput. Mater. Sci., 2020, 184: 109866
doi: 10.1016/j.commatsci.2020.109866
10 Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications[M]. Weinheim: Wiley-VCH, John Wiley, 2003
11 Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design[J]. Acta Metall. Sin., 2018, 54: 293
11 董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54: 293
12 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65(5): 286
doi: 10.1080/09506608.2019.1638581
13 Liu T Y, Min X H, Zhang S, et al. Microstructures and mechanical properties of Ti-Al-V-Nb alloys with cluster formula manufactured by laser additive manufacturing[J]. Trans. Nonferrous Metals Soc. China, 2021, 31(10): 3012
doi: 10.1016/S1003-6326(21)65711-4
14 Wang Q, Ji C J, Wang Y M, et al. β-Ti alloys with low young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A(4): 1872
15 Che J D, Jiang B B, Wang Q, et al. Effects of minor Hf/Ta/Nb additions on high-temperature oxidation-resistant properties of near α-Ti alloys[J]. Chin. J. Nonferrous Met., 2016, 26: 2086
doi: 10.1016/S1003-6326(16)64288-7
15 车晋达, 姜贝贝, 王 清 等. 微量元素(Hf/Ta/Nb)添加对近α-Ti合金高温抗氧化性能的影响[J]. 中国有色金属学报, 2016, 26: 2086
16 Liu T Y, Zhang S, Wang Q, et al. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V[J]. Sci. China Technol. Sci., 2021, 64(8): 1732
doi: 10.1007/s11431-020-1812-9
17 Zhang T L, Zhu J M, Yang T, et al. A new α+β Ti-alloy with refined microstructures and enhanced mechanical properties in the as-cast state[J]. Scr. Mater., 2022, 207: 114260
doi: 10.1016/j.scriptamat.2021.114260
18 Jing R, Liang S X, Liu C Y, et al. Structure and mechanical properties of Ti-6Al-4V alloy after zirconium addition[J]. Mater. Sci. Eng. A, 2012, 552: 295
doi: 10.1016/j.msea.2012.05.043
19 Zhang Z X, Qu S J, Feng A H, et al. Achieving grain refinement and enhanced mechanical properties in Ti-6Al-4V alloy produced by multidirectional isothermal forging[J]. Mater. Sci. Eng., 2017, 692: 127
doi: 10.1016/j.msea.2017.03.024
20 Welsch G, Boyer R, Collings E W. Materials Properties Handbook: Titanium Alloys[M]. Materials Park: ASM International, 1994
21 Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength[J]. Nat. Commun., 2016, 7: 11176
doi: 10.1038/ncomms11176 pmid: 27034109
22 Chen Y. The microstructure and mechanical properties of Ti-Al-V-Fe-O low cost titanium alloy[D]. Harbin: Harbin Institute of Technology, 2014
22 陈 云. 低成本Ti-Al-V-Fe-O合金的组织和性能[D]. 哈尔滨: 哈尔滨工业大学, 2014
23 Murray J L. Phase Diagrams of Binary Titanium Alloys[M]. Materials Park: ASM International, 1987: 340
24 Zheng Y F, Williams R E A, Nag S, et al. The effect of alloy composition on instabilities in the β phase of titanium alloys[J]. Scr. Mater., 2016, 116: 49
doi: 10.1016/j.scriptamat.2016.01.024
25 Jiao Z G, Ma C, Fu J, et al. The effects of Zr contents on microstructure and properties of laser additive manufactured Ti-6.5Al-3.5Mo-0.3Si-xZr alloys[J]. J. Alloys Compd., 2018, 745: 592
doi: 10.1016/j.jallcom.2018.02.079
26 Fu B G, Wang H W, Zou C M, et al. The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys[J]. Mater. Charact., 2015, 99: 17
doi: 10.1016/j.matchar.2014.09.015
27 Mehjabeen A, Xu W, Qiu D, et al. Redefining the β-phase stability in Ti-Nb-Zr alloys for alloy design and microstructural prediction[J]. JOM, 2018, 70: 2254
doi: 10.1007/s11837-018-3010-1
28 Kitashima T, Suresh K S, Yamabe-Mitarai Y. Effect of germanium and silicon additions on the mechanical properties of a near-α titanium alloy[J]. Mater. Sci. Eng. A, 2014, 597: 212
doi: 10.1016/j.msea.2013.12.099
29 Zhan Y Z, Li C L, Jiang W P. β-type Ti-10Mo-1.25Si-xZr biomaterials for applications in hard tissue replacements[J]. Mater. Sci. Eng., 2012, 32C: 1664
30 Dai S J, Wang Y, Chen F, et al. Influence of Zr content on microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr alloys[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1299
doi: 10.1016/S1003-6326(13)62597-2
31 Min X H, Emura S, Zhang L, et al. Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys[J]. Mater. Sci. Eng. A, 2008, 497 (1-2): 74
doi: 10.1016/j.msea.2008.06.018
32 Hao Y L, Li S J, Sun S Y, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J]. Mater. Sci. Eng. A, 2006, 441 (1-2): 112
doi: 10.1016/j.msea.2006.09.051
33 Guo T. Effect of Zr on the microstructure and properties of short-term high temperature titanium alloys[D]. Harbin: Harbin Institute of Technology, 2017
33 郭 涛. Zr对短时高温钛合金组织和性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2017
34 Matsumoto H, Yoneda H, Fabregue D, et al. Mechanical behaviors of Ti-V-(Al, Sn) alloys with α′ martensite microstructure[J]. J. Alloys Compd., 2011, 509(6): 2684
doi: 10.1016/j.jallcom.2010.11.089
35 Mahdavi M, Standish M, Iskakov A, et al. Reduced-order models correlating Ti beta 21S microstructures and vickers hardness measurements[J]. Mater. Genome Eng., 2021, 1(1): 1
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.