Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (8): 623-631    DOI: 10.11901/1005.3093.2020.286
  研究论文 本期目录 | 过刊浏览 |
TC4金字塔点阵结构的激光焊接及其平压性能
刘玮, 王辉, 褚兴荣(), 王延刚, 高军
山东大学(威海)机电与信息工程学院 威海 264209
Manufacturing Process and Compression Performance of TC4 Pyramid Lattice Structure with Laser Welding
LIU Wei, WANG Hui, CHU Xingrong(), WANG Yangang, GAO Jun
School of Mechatronics and Information Engineering, Shandong University (Weihai), Weihai 264209, China
引用本文:

刘玮, 王辉, 褚兴荣, 王延刚, 高军. TC4金字塔点阵结构的激光焊接及其平压性能[J]. 材料研究学报, 2021, 35(8): 623-631.
Wei LIU, Hui WANG, Xingrong CHU, Yangang WANG, Jun GAO. Manufacturing Process and Compression Performance of TC4 Pyramid Lattice Structure with Laser Welding[J]. Chinese Journal of Materials Research, 2021, 35(8): 623-631.

全文: PDF(24093 KB)   HTML
摘要: 

基于用高温节点下压法成形的TC4钛合金芯体,用面芯激光焊接制备了钛合金金字塔点阵结构。用响应曲面法优化激光焊接参数,实现了点阵结构面芯连接,分析焊接节点的微观组织并进行了点阵结构平压实验。结果表明:激光功率对焊接效果有显著的影响。点阵结构面芯激光焊接的优化工艺参数为:上面板的焊接功率为1.4 kW,下面板的焊接功率为1.2 kW,离焦量为30 mm,停留时间为1 s。在激光焊接热影响区发生了马氏体转变,分布着大量的针状马氏体;熔焊区的组织为粗大β相+针状α相。在焊接节点处,从熔焊区到母材的显微硬度随着马氏体相的减少而降低。根据平压实验结果分析了金字塔点阵结构变形和破坏的规律,桁架杆失效断裂发生在热影响区。用激光焊接制备的TC4钛合金点阵结构,其平压强度为3.09 MPa,平压模量为153.25 MPa。

关键词 金属材料金字塔点阵结构激光焊接微观组织平压性能    
Abstract

Based on the TC4 Ti-alloy core formed by alternating pin-press method at high-temperature, the laser welding connection process of the panel and the core was investigated in order to manufacture the pyramid lattice structure of Ti-alloy. The laser welding parameters were optimized by response surface method, the plane and core of lattice structure were connected, the microstructures of welding joints were examined, and the compression performance of lattice structure was investigated. The results show that the laser power has the most significant influence on the welding result. The optimized parameters of laser welding of lattice structure face core were as follows: welding power of upper panel was 1.4 kW, welding power of lower panel was 1.2 kW, defocusing quantity was 30mm, and residence time was 1 s. The martensite transformation of Ti-alloy occurred, and a large number of acicular martensite phases distributed in the heat affected zone of laser welding. The microstructure of welding zone was coarse β phase and acicular α phase. The microhardness decreased from the weld zone to the base metal in the welding joints with the decreasing of martensite phase. Based on the compression process recorded by the camera the deformation and failure process of the pyramid lattice structure were analyzed. The failure fracture of truss rod occurred in the heat-affected zone. The compression pressure strength and modulus of the TC4 Ti-alloy lattice structure manufactured by laser welding were 3.09 MPa and 153.25 MPa, respectively.

Key wordsmetallic materials    pyramid lattice structure    laser welding    microstructure    compression performance
收稿日期: 2020-07-13     
ZTFLH:  TG430.40  
基金资助:山东省自然科学基金(ZR2019MEE008);山东省重点研发计划(2019TSLH0103)
作者简介: 刘玮,女,1993年生,硕士生
ElementAlVFeCOTi
Content6.04.10.190.020.16Bal.
表1  TC4钛合金的成分
图1  用高温节点下压法制备的金字塔点阵芯体
图2  焊接设备和快速夹具
图3  点阵芯体的焊接
LabelFactorsLevels
-101
ALaser power/kW11.52
BDefocus quantity/mm203040
CResidence time/s0.511.5
表2  用响应曲面法分析激光焊接的参数因素和水平
No.

Laser power

/kW

Defocus quantity

/mm

Residence time/s

Diameter of solder spot

/mm

1-1101.85
21014.06
30002.21
40002.53
510-11.93
6-1011.83
70-117.43
80002.67
9-10-11.19
100002.3
110-1-14.58
12-1-103.35
130113.23
1401-10.89
151-108.6
160002.3
171102.32
表3  激光焊接参数优化响应曲面的实验设计和结果
图4  响应曲面实验的点焊试件
SourceSum of squaresDegree of freedomMean squareF valueP value
Model66.6197.4028.390.0001
A9.4419.4436.210.0005
B30.69130.69117.74<0.0001
C7.9217.9230.380.0009
AB5.7115.7121.910.0023
AC0.5610.562.130.189
BC0.06510.0650.250.6328
A20.02410.0240.0930.7689
B212.23112.2346.900.0002
C20.02310.0230.0870.7763
Residual1.8270.26--
Lack of fit1.6830.5615.340.0117
Pure error0.1540.036--
Cor total65.4416---
表4  焊点直径数学模型的方差分析表
图5  焊点直径、功率和离焦量的响应曲面和等高线
图6  激光焊TC4 1×1单元点阵结构
图7  TC4钛合金的原始金相组织
图8  不同区域的微观组织
图9  激光焊接点阵结构接头处显微硬度的分布
图10  激光焊接点阵压缩实验中金字塔点阵的失效过程
图11  激光焊点阵结构的压缩载荷位移曲线
1 Gibson L J, Ashby M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997
2 Feng R J, Yu J M. Honeycomb sandwich plate and its application in automotive industry [J]. Automobile Technology & Material, 2003, (8): 30
2 冯仁杰, 于九明. 蜂窝夹芯复合板及其在汽车工业中的应用 [J]. 汽车工艺与材料, 2003, (8): 30
3 Davies G O, Hitchings D, Besant T, et al. Compression after impact strength of composite sandwich panels [J]. Compos. Struct., 2004, 63(1): 1
4 Wadley H N G, Fleck N A, Evans A G. Fabrication and structural performance of periodic cellular metal sandwich structures [J]. Compos. Sci. Technol., 2003, 63(16): 2331
5 Froend M, Fomin F, Riekehr S, et al. Fiber laser welding of dissimilar titanium (Ti-6Al-4V/cp-Ti) T-joints and their laser forming process for aircraft application [J]. Opt. Laser Technol., 2017, 96: 123
6 Rack H J, Qazi J I. Titanium alloys for biomedical applications [J]. Mater. Sci. Eng. C, 2006, 26(8): 1269
7 Bartolomeu F, Buciumeanu M, Pinto E, et al. Wear behavior of Ti6Al4V biomedical alloys processed by selective laser melting, hot pressing and conventional casting [J]. T. Nonferr. Metal. Soc., 2017, 27(4): 829
8 Sypeck D J, Wadley H N G. Cellular truss core sandwich structures [J]. Appl. Compos. Mater., 2005, 12(3-4): 229
9 Bai L S. Study on preparation of Ti6Al4V three-dimensional lattice structure and its mechanical behavior [D]. Beijing: Beijing Jiaotong University, 2015
9 白利硕. 钛合金三维点阵结构制备和力学行为研究 [D]. 北京:北京交通大学, 2015
10 Zhao B, Li Z Q, Hou H L, et al. Research progress on fabrication methods of metal three dimensional lattice structure [J]. Rare Metal Mat. Eng., 2016, 45(8): 2189
10 赵冰, 李志强, 侯红亮等. 金属三维点阵结构制备技术研究进展 [J]. 稀有金属材料与工程, 2016, 45(8): 2189
11 Zeng S, Zhu R, Jiang W, et al. Research Progress of Metal Lattice Materials [J]. Material Reports, 2012, 26(5): 18
11 曾嵩, 朱荣, 姜炜等. 金属点阵材料的研究进展 [J]. 材料导报, 2012, 26(5): 18
12 Wu S Q, Lu Y J, Gan Y L, et al. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments [J]. J. Alloy. Compd., 2016, 672: 643
13 Zhao Q, Liu Y, Wang L, et al. Effect of strain rate on tensile deformation behavior of laser welded joints of superalloy GH4169 [J]. Chin. J. Mater. Res., 2016, 30(12): 881
13 赵强, 刘杨, 王磊等. 应变速率对GH4169合金焊接接头拉伸变形行为的影响 [J]. 材料研究学报, 2016, 30(12): 881
14 Sahoo S K, Bishoyi B, Mohanty U K, et al. Effect of laser beam welding on microstructure and mechanical properties of commercially pure titanium[J]. Trans. Indian Inst. Met., 2017, 70(7): 1817
15 Chan C W, Smith G C. Fibre laser joining of highly dissimilar materials: commercially pure Ti and PET hybrid joint for medical device applications [J]. Mater. Des., 2016, 103: 278
16 Gong W H, Chen Y H, Ke L M. Microstructure and properties of laser micro welded joint of TiNi shape memory alloy [J]. Trans. Nonferr. Metal. Soc., 2011, 21(9): 2044
17 Quazi M M, Ishak M, Fazal M A, et al. Current research and development status of dissimilar materials laser welding of titanium and its alloys [J]. Opt. Laser Technol., 2020, 126: 106090
18 Xu Z Z, Dong Z Q, YU Z H, et al. Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for ti6al4v titanium alloy [J]. T. Nonferr. Metal. Soc., 2020, 30(5): 1277
19 Zhang Y Y, Zhu Z H, Liu J Z, et al. Research on laser welding of 1.2 mm thick TC4 titanium alloy [J]. Applied laser., 2019, 39(4): 596
19 张颖云, 朱增辉, 刘江哲等. 1.2 mm厚TC4钛合金薄板激光焊工艺研究 [J]. 应用激光, 2019, 39(4): 596
20 Gao X L, Zhang L J, Liu J, et al. Effects of weld cross-section profiles and microstructure on properties of pulsed Nd: YAG laser welding of Ti6Al4V sheet [J]. Int. J. Adv. Manuf. Technol., 2014, 72(5-8): 895
21 Kumar C, Das M, Paul C P, et al. Comparison of bead shape, microstructure and mechanical properties of fiber laser beam welding of 2 mm thick plates of Ti-6Al-4V alloy [J]. Opt. Laser Technol., 2018, 105: 306
22 Zhang X L, Li F G, Peng F H, et al. Hot workability of Ti6Al4V alloy based on processing map [J]. Journal of Aeronautical Materials, 2007, (5): 40
22 张晓露, 李付国, 彭富华等. 基于热加工图的TC4合金热成形性能研究 [J]. 航空材料学报, 2007, (5): 40
23 Zhang T Y. Study on fine-grain size titanium 6Al-4V alloy material for low temperature superplasticity [D]. Changsha: Central South University.2014
23 张拓阳. 细晶TC4合金的低温超塑性变形研究 [D]. 长沙:中南大学, 2014
24 Geng L B. Research on laser welding technology for car battery covers [D]. Harbin: Harbin Institute of Technology, 2017
24 耿立博. 汽车动力电池盖板激光焊接工艺研究 [D]. 哈尔滨:哈尔滨工业大学, 2017
25 Zhao X L, Wang B, Gong S L, et al. Study on microstructure and mechanical properties of laser welded joint of 2 mm thick TC4 titanium alloy [J]. Hot Working Technology, 2017, 46(9): 209
25 赵晓龙, 王彬, 巩水利等. 2.0 mm厚TC4钛合金激光焊接接头组织与力学性能研究 [J]. 热加工工艺, 2017, 46(9): 209
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.