Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (8): 632-640    DOI: 10.11901/1005.3093.2020.300
  研究论文 本期目录 | 过刊浏览 |
亚磷酸三苯酯调控聚乳酸/氯化铁共混体系的降解行为和性能
令狐昌开1, 李小龙1, 罗筑1(), 杨乐2, 夏啸松1
1.贵州大学材料与冶金学院高分子材料工程系 贵阳 550025
2.贵州理工学院材料与能源工程学院 贵阳 550003
Triphenyl Phosphite Regulates Degradation Behavior and Properties of Polylactic Acid/Ferric Chloride Blend
LINGHU Changkai1, LI Xiaolong1, LUO Zhu1(), YANG Le2, XIA Xiaosong1
1.Department of Polymer Materials Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2.School of Materials and Energy Engineering, Guizhou Institute of Technology, Guiyang 550003, China
引用本文:

令狐昌开, 李小龙, 罗筑, 杨乐, 夏啸松. 亚磷酸三苯酯调控聚乳酸/氯化铁共混体系的降解行为和性能[J]. 材料研究学报, 2021, 35(8): 632-640.
Changkai LINGHU, Xiaolong LI, Zhu LUO, Le YANG, Xiaosong XIA. Triphenyl Phosphite Regulates Degradation Behavior and Properties of Polylactic Acid/Ferric Chloride Blend[J]. Chinese Journal of Materials Research, 2021, 35(8): 632-640.

全文: PDF(8451 KB)   HTML
摘要: 

用熔融共混法制备了氯化铁(FeCl3)催化聚乳酸(PLA)快速降解材料。PLA材料降解的速率提高了10倍,但是PLA/FeCl3在加工过程中分子量大幅度减小,使力学性能和可加工性能降低。为了减小PLA/FeCl3在熔融加工中的过度降解,将有优良扩链和增塑效果的亚磷酸三苯酯(TPPi)引入PLA/FeCl3体系中,用熔融共混制备TPPi改性PLA/FeCl3材料,使其具有一定的综合力学性能。通过碱溶液降解实验和多种测试研究了样品的降解速率和综合性能。结果表明,TPPi和FeCl3 的添加量之比为3∶1的P3-1样品性能最优,拉伸强度和弯曲强度分别达到43.78 MPa和99.04 MPa,在碱液中降解8d其质量损失率为65.76%,远大于纯聚乳酸的4.67%。含2.95 phr FeCl3的样品能在碱液中产生高降解速率,加工时不发生过度降解,由此制备出一种可快速降解并保持良好力学性能的聚乳酸改性材料。

关键词 复合材料聚乳酸氯化铁亚磷酸三苯酯降解行为力学性能    
Abstract

A rapid degradation material, ferric chloride (FeCl3) catalyzed polylactic acid (PLA) PLA/FeCl3 was prepared by the melt blending method, which presents degradation rate of 10 times higher than that of bare PLA. However, the molecular weight of PLA/FeCl3 is greatly reduced during the processing, which results in decrease in mechanical properties and processability. In order to reduce the over-degradation of PLA/FeCl3 in melt processing, triphenyl phosphite (TPPi), which has excellent chain extension and plasticizing effect, was introduced into the PLA/FeCl3 system and melt blended to improve its comprehensive mechanical properties. The degradation rate and comprehensive performance of the prepared samples were investigated via alkaline solution degradation test and various test methods. The results show that the sample P3-1 had the best performance when the ratio of TPPi to FeCl3 was 3∶1, namely, the tensile strength and flexural strength reached 43.78 MPa and 99.04 MPa, respectively. The mass loss rate of degradation for 8d in alkaline solution is 65.76%, which was much higher than that of 4.67% for bare PLA. The sample containing 2.95 phr FeCl3 has been able to produce a high degradation rate in the alkaline solution without over-degradation during the processing, thereby obtaining a modified PLA material that can quickly degrade and maintain good mechanical properties.

Key wordscomposite    polylactic acid    ferric chloride    triphenyl phosphite    degradation behavior    mechanical property
收稿日期: 2020-07-20     
ZTFLH:  TQ323  
基金资助:贵州省科学技术基金(20195607)
作者简介: 令狐昌开,男,1998年生,硕士生
Sample PLA TPPi FeCl3
P0-010000
P0-110002.95
P1-11002.952.95
P2-11005.902.95
P3-11008.852.95
P4-110011.802.95
P5-110014.752.95
表1  样品的配方表
图1  纯聚乳酸和TPPi改性PLA/FeCl3材料的反应加工过程中的扭矩曲线
图 2  PLA、TPPi、FeCl3以及纯化TPPi改性PLA/FeCl3材料的红外谱
图3  TPPi抑制FeCl3/PLA改性材料过度降解的机理图
图4  纯PLA和TPPi改性PLA/FeCl3样品在10%(质量分数)NaOH溶液中降解行为的变化过程
图5  纯PLA以及TPPi改性PLA/FeCl3样品在NaOH溶液中质量损失率
图6  纯PLA和TPPi改性PLA/FeCl3样品的TG/DTG曲线
Sample

Temperature of

loss 5%/℃

Maximum decomposition

temperature of the first platform/℃

Maximum decomposition temperature of the second platform/℃
PLA351389-
P0-1258315-
P1-1228194353
P2-1204196378
P3-1197205391
P4-1173177393
P5-1143167395
表2  图6中样品的热重数据
图7  纯PLA和TPPi改性PLA/FeCl3材料170℃时的储能模量随角频率的变化
图8  纯PLA和TPPi改性PLA/FeCl3材料的复数粘度随角频率的变化
图9  纯PLA和纯化的TPPi改性PLA/FeCl3材料的分子量及其分布
SampleMn (g/mol)Mw (g/mol)Mw/Mn
P0-054,266914381.685
P0-15,524297305.382
P1-128,135944463.357
P3-139,810867702.180
P5-144,668466781.045
表3  图9中用折光指数检测器所得的参数
图10  纯PLA和TPPi改性PLA/FeCl3样品的拉伸强度和弯曲强度
1 Alippilakkotte S, Sreejith L. Benign route for the modification and characterization of poly(lactic acid) (PLA) scaffolds for medicinal application [J]. J. Appl. Polym. Sci., 2018, 135(13): 46056
2 Marra A, Silvestre C, Duraccio D, et al. Polylactic acid/zinc oxide biocomposite films for food packaging application [J]. Int. J. Biol. Macromol., 2016, 88: 254
3 Li M Z, Hu X Y, Yu J, et al. Structure and properties of epoxy modified PLA/low melting point PA6 composites [J]. Chin. J. Mater. Res., 2019,33(4):261
3 李明专, 胡孝迎, 何敏等.环氧树脂改性聚乳酸/低熔点尼龙6复合材料的结构和性能 [J].材料研究学报,2019,33(4):261
4 Arnau Carné Sánchez, Collinson S R. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions [J]. Eur. Polym. J., 2011, 47(10): 1970
5 Zhu D Y, Gu T, Yu J, et al. Dynamic rheological characterization of PLA/PBS blends compatibilized by epoxy furan resin [J]. Chin. J. Mater. Res., 2018,32(7):547
5 朱大勇, 辜婷, 于杰等. 环氧呋喃树脂反应性增容PLA/PBS共混体系的动态流变学表征 [J]. 材料研究学报, 2018, 32(7): 547
6 Zuo Y F, Gu J, Qiao Z, et al. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites. [J]. Int. J. Biol. Macromol., 2015, 72: 391
7 Ramlee N A, Tominaga Y. Mechanical and degradation properties in alkaline solution of poly(ethylene carbonate)/poly(lactic acid) blends [J]. Polymer, 2019, 166: 44
8 Felfel R M, Hossain K M Z, Parsons A J, et al. Accelerated in vitro degradation properties of polylactic acid/phosphate glass fibre composites [J]. J. Mater. Sci., 2015, 50(11): 3942
9 Yang C H, Ma F C, Gao C G, et al. Degradation properties of polylactic acid and its copolymer monofilaments in vitro [J]. Polym. Mater. Sci. Eng., 2019, 35(11): 101
9 杨彩红, 马凤仓, 高晨光等. 聚乳酸及其共聚物单丝的体外降解性能 [J]. 高分子材料科学与工程, 2019, 35(11): 101
10 And T M O, Coates G W. Stereoselective ring-opening polymerization of meso-lactide: synthesis of syndiotactic poly(lactic acid) [J]. J. Chem. Soc., 2000, 121(16): 4072
11 Orozco V H, Kozlovskaya V, Kharlampieva E, et al. Biodegradable self-reporting nanocomposite films of poly(lactic acid) nano-particles engineered by layer-by-layer assembly [J]. Polymer, 2010, 51(18): 4127
12 Li X L, Gong S, Yang L, et al. Study on the degradation behavior and mechanism of poly(lactic acid) modification by ferric chloride [J]. Polymer, 2019, 188: 121991
13 Zhou F, Lu Q, Zhang Y H, et al. Effect of chain extender triphenyl phosphite on the structure and properties of r-PETG [J]. Polym. Mater. Sci. Eng., 2017, 33(2): 78
13 周峰, 吕奇, 张月航等. 扩链剂亚磷酸三苯酯对r-PETG结构与性能的影响 [J]. 高分子材料科学与工程, 2017, 33(2): 78
14 Aharoni, Shaul M. Physics of injection-moldable PET [J]. Int. J. Polym. Mater., 2001, 50(3-4): 301
15 Ma M, Xu L, Liu K, et al. Effect of triphenyl phosphite as a reactive compatibilizer on the propertiesof poly (lactic acid)/poly (butylene succinate) blends [J]. J. Appl. Polym. Sci., 2019, 137(355): 48646
16 Dias M L, Silva A P F. Transesterification reactions in triphenyl phosphite additivated‐poly(ethylene terephthalate)/poly(ethylene naphthalate) blends [J]. Polym. Eng. Sci., 2000, 40(8): 1777
17 Xie J X, Yang R J. Preparation and characterization of high-molecular-weight poly(L-lactic acid) by chain-extending reaction with phosphites [J]. J. Appl. Polym. Sci., 2012, 124(5): 3963
18 Tang G, Wang X, Xing W, et al. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite [J]. Ind. Eng. Chem. Res., 2012, 51(37): 12009
19 Wang Y, Steinhoff B, Brinkmann C, et al. In-line monitoring of the thermal degradation of poly(l-lactic acid) during melt extrusion by UV-vis spectroscopy [J]. Polymer, 2008, 49(5): 1257
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.