Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (6): 433-440    DOI: 10.11901/1005.3093.2020.225
  研究论文 本期目录 | 过刊浏览 |
冻融作用后超高性能混凝土中钢纤维的拔出行为研究
谢瑞峰1,2, 仵云飞2(), 唐百晓3
1.上海交通大学船舶海洋与建筑工程学院 上海 200240
2.湖州职业技术学院 湖州 313099
3.安康学院经济管理学院 安康 725000
Pullout Behavior of Steel Fiber in Ultra-high-performance Concrete Subjected to Freeze-thaw
XIE Ruifeng1,2, WU Yunfei2(), TANG Baixiao3
1.School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.Civil Engineering College, Huzhou Vacational and Technical College, Huzhou 313099, China
3.School of Economics & Management, Ankang University, Ankang 725000, China
引用本文:

谢瑞峰, 仵云飞, 唐百晓. 冻融作用后超高性能混凝土中钢纤维的拔出行为研究[J]. 材料研究学报, 2021, 35(6): 433-440.
Ruifeng XIE, Yunfei WU, Baixiao TANG. Pullout Behavior of Steel Fiber in Ultra-high-performance Concrete Subjected to Freeze-thaw[J]. Chinese Journal of Materials Research, 2021, 35(6): 433-440.

全文: PDF(5224 KB)   HTML
摘要: 

将超高性能混凝土冻融0~1500次后进行钢纤维的拔出实验和纳米压痕实验,研究了倾斜角度和埋置深度对钢纤维拔出行为的影响。结果表明,不同倾角和埋深的钢纤维其拔出荷载峰值都随着冻融次数的增加而逐渐降低,倾角为50°时拔出荷载峰值达到最大值;钢纤维-水泥浆体界面过渡区中的微孔洞逐渐增多和汇聚,过渡区的厚度由20 μm 增加到65 μm;钢纤维与过渡区组成相的微观力学性能的降低较小。过渡区的宏观有效弹性模量随着冻融次数的增加而降低,冻融600次后降低的幅度增大。过渡区的微观结构和宏观力学性能劣化,是钢纤维粘结性能降低的主要原因。

关键词 无机非金属材料钢纤维拔出行为纳米压痕测试粘结性能微观结构力学性能    
Abstract

The effect of inclined angle and embedment depth on the pull-out behavior of single fiber within ultra-high-performance concrete subjected to 0~1500 freeze-thaw (F-T) cycles were investigated by pull-out test and nano-indentation meter. The results show that the peak values of pull-out load of steel fiber with different inclination angle and embedment depth decrease with the increasing freeze-thaw cycles, and reach the maximum value at 50° inclination angle. The micropores in the interface transition zone (ITZ) of steel fiber-cement paste gradually increase and converge, correspondingly, the thickness of ITZ increases from 20 μm to 65 μm. The mechanical properties of the local area composed of steel fiber and its surrounding component phases in ITZ decrease little. The macro effective elastic modulus of ITZ decreases with the increasing freeze-thaw cycles, and the decrease range is greater after 600 F-T cycles. The degradation of microstructure and macro mechanical properties of ITZ is the main reason for the decrease of bonding properties of the steel fiber.

Key wordsinorganic non-metallic materials    steel fiber pull-out behavior    nanoindentation test    bond properties    microstructure    mechanical properties
收稿日期: 2020-06-11     
ZTFLH:  TU528.58  
基金资助:国家自然科学基金(51679136);安康学院高水平项目专项资金(2016AYPYZX13);陕西省教育专项资金(18JK0018)
作者简介: 谢瑞峰,男,1984年生,博士

Cement

/kg·m-3

Silica fume

/kg·m-3

Fine sand

/kg·m-3

Steel fiber

/kg·m-3

Superplasticizer

/L·m-3

Water

/kg·m-3

W

/cm

890157934140571930.18
表1  UHPC的配合比
图1  不同次数冻融循环作用下倾斜钢纤维的拔出荷载-位移曲线
图2  不同倾角的钢纤维拔出荷载的变化
图3  冻融循环作用不同埋深的钢纤维的拔出荷载-滑移曲线
图4  不同埋深的钢纤维拔出荷载的变化
图5  钢纤维表面和界面过渡区表面的纳米压痕阵列
图6  冻融循环作用下界面过渡区弹性模量的分布云图
F-T cycles030060090012001500
Ehom/GPa26.3226.2025.4124.1922.7220.53
表2  冻融循环作用下界面过渡区的宏观有效弹性模量
图7  钢纤维、界面过渡区微观组成相的相对模量和宏观有效弹性模量的变化
1 Shi C, Wu Z, Xiao J, et al. A review on ultra-high performance concrete: Part I. Raw materials and mixture design [J]. Constr. Build. Mater., 2015, 101(30):741
2 Park S H, Kim D J, Ryu G S, et al. Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete [J]. Cement Concr. Compo., 2012, 34(2):172
3 Abdallah S, Fan M, Cashell K A. Bond-slip behavior of steel fibers in concrete after exposure to elevated temperatures [J]. Constr. Build. Mater., 2017, 140:542
4 Naaman A E, Namur G G, Alwan J M, et al. Fiber pullout and bond slip. I: Analytical study [J]. Struct. Eng., 1991, 117(9): 2769
5 Li S H, Zeng Q Y, Xiao Y L, et al. Biomimicry of bamboo bast fiber with engineering composite materials [J]. Mat. Sci. Eng. C- Bio. S., 1995, 3(2):125
6 Leung C K, Li V C. New strength-based model for the debonding of discontinuous fibers in an elastic matrix [J]. Mater. Ence, 1991, 26(22):5996
7 Li J X. A new model for the pull-out of single fibers from low density polyethylene [J]. Compos., 1994, 25(7):558
8 Kelly A, Tyson W R. Tensile properties of fiber-reinforced metals: Copper/tungsten and copper/molybdenum [J]. Mech. Phys. Solids, 1965, 13(6):329
9 Vekey R C D, Majumdar A J. Determining bond strength in fiber-reinforced composites [J]. Mag. Concrete Res., 1968, 20(65): 229
10 Atkinson C, Avila J, Betz E, et al. The rod pull out problem, theory and experiment [J]. Mech. Phys. Solids, 1982, 30(3):97
11 Gurney C, Hunt J. Quasi-Static Crack Propagation [A]. PhilTrans Royal Soc [C]. London, 1967, 299A:508
12 Gao Y, Mai Y, Cotterell B. Fracture of fiber-reinforced materials [J]. Appl. Math. Phys., 1988, 39(4): 550
13 Takaku A, Arridge R G C. The effect of interfacial radial and shear stress on fiber pull-out in composite materials [J]. Phys. D. Appl. Phys., 1973, 6(17):2038.
14 Sorensen C O, Berge E, Nikolaisen E B, et al. Investigation of fiber distribution in concrete batches discharged from ready-mix truck [J]. Int. J. Concr. Struct. M., 2014, 8(4): 279
15 Abdallah S, Fan M, Zhou X. Pull-out behavior of hooked end steel fibers embedded in ultra-high performance mortar with various W/B ratios [J]. Int. J. Concr. Struct. M., 2017, 11(2): 301
16 Robins P, Austin S, Jones P. Pull-out behavior of hooked steel fibres [J]. Mater. Struct., 2002, 35(251): 434
17 Guduli X V, Dang T, Gü, et al. Computational modeling of fiber flow during casting of fresh concrete [J]. Comput. Mech., 2019
18 Laranjeira de Oliveira F. Design-oriented constitutive model for steel fiber reinforced concrete [D]. Barcelona, Spain: Univ. Politècnica de Catalunya, 2010
19 Cunha V M. Steel fiber reinforced self-compacting concrete (from micromechanics to composite behavior) [D]. Braga, Portugal: Univ. of Minho, 2010
20 Pan J S, Liu J Z, Zhang Q Q, et al. Study on pull-out behavior of single steel fiber in ultra-high performance fiber reinforced cement-based composites [J]. Jiangsu Build. Mater., 2018, (2): 15
20 潘竟盛, 刘建忠, 张倩倩等. 超高性能纤维增强水泥基复合材料单根钢纤维拔出行为研究 [J]. 江苏建材, 2018, (2): 15
21 Dong X J, Ding Y N. Experimental study on the mechanical properties of SFHPC after exposure to high temperatures [A]. National Conference on fiber reinforced concrete [C]. Zhengzhou, 2006
21 董香军, 丁一宁. 高温后钢纤维高性能混凝土力学性能试验研究 [A]. 全国钢纤维混凝土学术会议 [C]. 郑州, 2006
22 Zhang H, Rena Y. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study [J]. Mater., 2016, 9(10), 800
23 Lee Y, Kang S T, Kim J K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix [J]. Constr. Build. Mater., 2010, 24(10): 2030
24 Hsueh, Chun-Hway. Evaluation of interfacial shear strength, residual clamping stress and coefficient of friction for fiber-reinforced ceramic composites [J]. Acta Metal. Et. Mater., 1990, 38(3): 403
25 Oliver W C. An improved technique for determinating hardness and elastic modulus using load and displacement sensing [J]. J. Mater. Res., 1992, 7
26 Jianzhuang Xiao, Wengui Li, Zhihui Sun, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation [J]. Cement. Concrete Compos., 2013, 37(3): 276
27 Zhao S, Sun W. Application and research progress of nanoindentation in the field of cement-based materials [J]. J. Ceram. Soc., 2011, 39(1): 164
27 赵素晶, 孙伟. 纳米压痕在水泥基材料中的应用与研究进展 [J]. 硅酸盐学报, 2011, 39(1):164
28 Yao W, Liang K, He L. Determination of elastic-plasticity and creep of calcium-silic ate-hydrate ate-hydrate gel [J]. Chin. J. Mater. Res., 2010, 24(2): 123
28 姚武, 梁慷, 何莉. 应用纳米压痕技术表征水化硅酸钙凝胶 [J]. 材料研究学报, 2010, 24(2): 123
29 Xiao J Z, Li W G, Sun Z H, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation [J]. Cement Concr. Compo., 2013, 37: 276
30 Zaoui A. Continuum micromechanics: survey [J]. ASCE Journal of Eng. Mech. 2002, 128(8): 808
31 Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems [A]. Royal Society A [C]. London, 1957, 241(1226): 376
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[8] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[9] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.