|
|
冻融作用后超高性能混凝土中钢纤维的拔出行为研究 |
谢瑞峰1,2, 仵云飞2( ), 唐百晓3 |
1.上海交通大学船舶海洋与建筑工程学院 上海 200240 2.湖州职业技术学院 湖州 313099 3.安康学院经济管理学院 安康 725000 |
|
Pullout Behavior of Steel Fiber in Ultra-high-performance Concrete Subjected to Freeze-thaw |
XIE Ruifeng1,2, WU Yunfei2( ), TANG Baixiao3 |
1.School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.Civil Engineering College, Huzhou Vacational and Technical College, Huzhou 313099, China 3.School of Economics & Management, Ankang University, Ankang 725000, China |
引用本文:
谢瑞峰, 仵云飞, 唐百晓. 冻融作用后超高性能混凝土中钢纤维的拔出行为研究[J]. 材料研究学报, 2021, 35(6): 433-440.
Ruifeng XIE,
Yunfei WU,
Baixiao TANG.
Pullout Behavior of Steel Fiber in Ultra-high-performance Concrete Subjected to Freeze-thaw[J]. Chinese Journal of Materials Research, 2021, 35(6): 433-440.
1 |
Shi C, Wu Z, Xiao J, et al. A review on ultra-high performance concrete: Part I. Raw materials and mixture design [J]. Constr. Build. Mater., 2015, 101(30):741
|
2 |
Park S H, Kim D J, Ryu G S, et al. Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete [J]. Cement Concr. Compo., 2012, 34(2):172
|
3 |
Abdallah S, Fan M, Cashell K A. Bond-slip behavior of steel fibers in concrete after exposure to elevated temperatures [J]. Constr. Build. Mater., 2017, 140:542
|
4 |
Naaman A E, Namur G G, Alwan J M, et al. Fiber pullout and bond slip. I: Analytical study [J]. Struct. Eng., 1991, 117(9): 2769
|
5 |
Li S H, Zeng Q Y, Xiao Y L, et al. Biomimicry of bamboo bast fiber with engineering composite materials [J]. Mat. Sci. Eng. C- Bio. S., 1995, 3(2):125
|
6 |
Leung C K, Li V C. New strength-based model for the debonding of discontinuous fibers in an elastic matrix [J]. Mater. Ence, 1991, 26(22):5996
|
7 |
Li J X. A new model for the pull-out of single fibers from low density polyethylene [J]. Compos., 1994, 25(7):558
|
8 |
Kelly A, Tyson W R. Tensile properties of fiber-reinforced metals: Copper/tungsten and copper/molybdenum [J]. Mech. Phys. Solids, 1965, 13(6):329
|
9 |
Vekey R C D, Majumdar A J. Determining bond strength in fiber-reinforced composites [J]. Mag. Concrete Res., 1968, 20(65): 229
|
10 |
Atkinson C, Avila J, Betz E, et al. The rod pull out problem, theory and experiment [J]. Mech. Phys. Solids, 1982, 30(3):97
|
11 |
Gurney C, Hunt J. Quasi-Static Crack Propagation [A]. PhilTrans Royal Soc [C]. London, 1967, 299A:508
|
12 |
Gao Y, Mai Y, Cotterell B. Fracture of fiber-reinforced materials [J]. Appl. Math. Phys., 1988, 39(4): 550
|
13 |
Takaku A, Arridge R G C. The effect of interfacial radial and shear stress on fiber pull-out in composite materials [J]. Phys. D. Appl. Phys., 1973, 6(17):2038.
|
14 |
Sorensen C O, Berge E, Nikolaisen E B, et al. Investigation of fiber distribution in concrete batches discharged from ready-mix truck [J]. Int. J. Concr. Struct. M., 2014, 8(4): 279
|
15 |
Abdallah S, Fan M, Zhou X. Pull-out behavior of hooked end steel fibers embedded in ultra-high performance mortar with various W/B ratios [J]. Int. J. Concr. Struct. M., 2017, 11(2): 301
|
16 |
Robins P, Austin S, Jones P. Pull-out behavior of hooked steel fibres [J]. Mater. Struct., 2002, 35(251): 434
|
17 |
Guduli X V, Dang T, Gü, et al. Computational modeling of fiber flow during casting of fresh concrete [J]. Comput. Mech., 2019
|
18 |
Laranjeira de Oliveira F. Design-oriented constitutive model for steel fiber reinforced concrete [D]. Barcelona, Spain: Univ. Politècnica de Catalunya, 2010
|
19 |
Cunha V M. Steel fiber reinforced self-compacting concrete (from micromechanics to composite behavior) [D]. Braga, Portugal: Univ. of Minho, 2010
|
20 |
Pan J S, Liu J Z, Zhang Q Q, et al. Study on pull-out behavior of single steel fiber in ultra-high performance fiber reinforced cement-based composites [J]. Jiangsu Build. Mater., 2018, (2): 15
|
20 |
潘竟盛, 刘建忠, 张倩倩等. 超高性能纤维增强水泥基复合材料单根钢纤维拔出行为研究 [J]. 江苏建材, 2018, (2): 15
|
21 |
Dong X J, Ding Y N. Experimental study on the mechanical properties of SFHPC after exposure to high temperatures [A]. National Conference on fiber reinforced concrete [C]. Zhengzhou, 2006
|
21 |
董香军, 丁一宁. 高温后钢纤维高性能混凝土力学性能试验研究 [A]. 全国钢纤维混凝土学术会议 [C]. 郑州, 2006
|
22 |
Zhang H, Rena Y. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study [J]. Mater., 2016, 9(10), 800
|
23 |
Lee Y, Kang S T, Kim J K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix [J]. Constr. Build. Mater., 2010, 24(10): 2030
|
24 |
Hsueh, Chun-Hway. Evaluation of interfacial shear strength, residual clamping stress and coefficient of friction for fiber-reinforced ceramic composites [J]. Acta Metal. Et. Mater., 1990, 38(3): 403
|
25 |
Oliver W C. An improved technique for determinating hardness and elastic modulus using load and displacement sensing [J]. J. Mater. Res., 1992, 7
|
26 |
Jianzhuang Xiao, Wengui Li, Zhihui Sun, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation [J]. Cement. Concrete Compos., 2013, 37(3): 276
|
27 |
Zhao S, Sun W. Application and research progress of nanoindentation in the field of cement-based materials [J]. J. Ceram. Soc., 2011, 39(1): 164
|
27 |
赵素晶, 孙伟. 纳米压痕在水泥基材料中的应用与研究进展 [J]. 硅酸盐学报, 2011, 39(1):164
|
28 |
Yao W, Liang K, He L. Determination of elastic-plasticity and creep of calcium-silic ate-hydrate ate-hydrate gel [J]. Chin. J. Mater. Res., 2010, 24(2): 123
|
28 |
姚武, 梁慷, 何莉. 应用纳米压痕技术表征水化硅酸钙凝胶 [J]. 材料研究学报, 2010, 24(2): 123
|
29 |
Xiao J Z, Li W G, Sun Z H, et al. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation [J]. Cement Concr. Compo., 2013, 37: 276
|
30 |
Zaoui A. Continuum micromechanics: survey [J]. ASCE Journal of Eng. Mech. 2002, 128(8): 808
|
31 |
Eshelby J D. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems [A]. Royal Society A [C]. London, 1957, 241(1226): 376
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|