Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (5): 394-400    DOI: 10.11901/1005.3093.2020.250
  研究论文 本期目录 | 过刊浏览 |
氧控In2O3薄膜的光电性能
孙茂林1, 宫震1, 王施文2, 尹航1, 李瑞武1, 张政1, 李雨彤1, 吴法宇1()
1.辽宁科技大学材料与冶金学院 鞍山 114051
2.鞍钢股份质检计量中心 鞍山 114000
Optical and Electrical Properties of Oxygen-controlled In2O3 Film
SUN Maolin1, GONG Zhen1, WANG Shiwen2, YIN Hang1, LI Ruiwu1, ZHANG Zheng1, LI Yutong1, WU Fayu1()
1.School of Materials and Metallurgy, Liaoning University of Science and Technology, Anshan 114051, China
2.Quality Inspection and Measurement Center of Anshan Iron & Steel Co. Ltd. , Anshan 114000, China
引用本文:

孙茂林, 宫震, 王施文, 尹航, 李瑞武, 张政, 李雨彤, 吴法宇. 氧控In2O3薄膜的光电性能[J]. 材料研究学报, 2021, 35(5): 394-400.
Maolin SUN, Zhen GONG, Shiwen WANG, Hang YIN, Ruiwu LI, Zheng ZHANG, Yutong LI, Fayu WU. Optical and Electrical Properties of Oxygen-controlled In2O3 Film[J]. Chinese Journal of Materials Research, 2021, 35(5): 394-400.

全文: PDF(5771 KB)   HTML
摘要: 

对比在控氧条件下制备态和退火态In2O3薄膜的微观结构和光电性能,分析两种状态中不同的氧作用机制。两种控氧行为都能够有效提高In2O3薄膜的晶格有序度和降低氧空位浓度,使其载流子浓度下降、迁移率提高和光学带隙变窄;等离子体制备过程中氧以高活性非平衡方式注入晶格,而退火时氧以低活性平衡态扩散的方式进入晶格;不同的氧作用机制使得退火态薄膜比制备态薄膜具有更少的结构缺陷、更高的氧空位浓度和更佳的透光导电性。

关键词 无机非金属材料In2O3薄膜控氧溅射控氧退火    
Abstract

The difference of oxygen acting mechanisms between the as-deposited and as-annealed In2O3 films under the oxygen-controlled conditions was investigated by the microstructure as well as optical and electrical properties. Both kinds of oxygen-controlled behaviors could effectively improve lattice order and reduce oxygen vacancies in In2O3 films, which narrowed optical band gap, decreased carrier concentration and increased mobility. Oxygen with a high activity was injected into films in a non-equilibrium manner during plasma-deposited process, and oxygen with a low activity by the equilibrium way accessed in films during annealing process. As a result, under different oxygen acting mechanism, the as-annealed In2O3 film had less structural defects and more oxygen vacancies than that of the as-deposited film by plasma sputtering, and in turn, had better light-transmittance and electrical conductance. Finally, oxygen-controlled behavior in indium oxide film underlies optical and electrical characteristics.

Key wordsinorganic non-metallic materials    In2O3 film    oxygen-controlled sputtering    oxygen-controlled annealing
收稿日期: 2020-06-23     
ZTFLH:  O484.5  
基金资助:国家自然科学基金(51502126);辽宁省自然科学基金(20180550802)
作者简介: 孙茂林,男,1996年生,硕士生
ParameterValue
Background vacuum/Pa3.0×10-3
Sputtering pressure/Pa1.1×10-1
Sputtering power/W150
Substrate-target distance/cm13
Substrate temperatureRoom temperature
Sputtering time/min70 (Ar)/120 (Ar+O2)
Flow ratio of Ar and O2/sccm11:0 (Ar)/10:1 (Ar+O2)
Deposited rate/nm·min-14.3 (Ar)/2.5 (Ar+O2)
Oxygen partial pressure/Pa0 (Ar)/1.0×10-2 (Ar+O2)
表1  In2O3薄膜的溅射工艺参数
图1  In2O3薄膜的退火处理曲线(a)和SEM照片:制备于纯Ar气氛(b);制备于氧分压为1.0×10-2 Pa的气氛(c);退火于氧分压为1.0×10-2 Pa的气氛(d)
图2  制备工艺不同的In2O3薄膜的XRD谱
图3  In2O3薄膜的透光光谱和光学带隙
图4  制备工艺不同的In2O3薄膜的电阻率、方块电阻、载流子浓度以及迁移率
1 Chen H J, Liu T, Wang B, et al. Highly efficient charge collection in dye-sensitized solar cells based on nanocomposite photoanode filled with indium-tin oxide interlayer [J]. Adv. Compos. Hybrid Mater., 2018, 1: 356
2 Xu L H, Wu T M. Synthesis of highly sensitive ammonia gas sensor of polyaniline/graphene nanoribbon/indium oxide composite at room temperature [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 7276
3 Chou C Y, Lobo R F. Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts [J]. Appl. Catal., 2019, 583A: 117144
4 Al-Kuhaili M F. Electrical conductivity enhancement of indium tin oxide (ITO) thin films reactively sputtered in a hydrogen plasma [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2729
5 Lany S, Zakutayev A, Mason T O, et al. Surface origin of high conductivities in undoped In2O3 thin films [J]. Phys. Rev. Lett., 2012, 108: 016802
6 Sudakar C, Dixit A, Kumar S, et al. Coexistence of anion and cation vacancy defects in vacuum-annealed In2O3 thin films [J]. Scr. Mater., 2010, 62: 63
7 Goswami S, Sharma A K. Structural and morphological properties of pulsed laser deposited In2O3 thin films at various oxygen pressures [J]. AIP Conf. Proc., 2019, 2082: 1
8 Kaleemulla S, Reddy A S, Uthanna S, et al. Physical properties of In2O3 thin films prepared at various oxygen partial pressures [J]. J. Alloys Compd., 2009, 479: 589
9 Guo S, Yang L, Zhang X P, et al. Modulation of optical and electrical properties of In2O3 films deposited by high power impulse magnetron sputtering by controlling the flow rate of oxygen [J]. Ceram. Int., 2019, 45: 21590
10 Park S Y, Ji K H, Jung H Y, et al. Improvement in the device performance of tin-doped indium oxide transistor by oxygen high pressure annealing at 150℃ [J]. Appl. Phys. Lett., 2012, 100: 162108
11 Kim N R, Lee J H, Lee Y Y, et al. Enhanced conductivity of solution-processed indium tin oxide nanoparticle films by oxygen partial pressure controlled annealing [J]. J. Mater. Chem., 2013, 1C: 5953
12 Oh Y W, Kim H, Baek K H, et al. Effect of post-annealing on low-temperature solution-processed high-performance indium oxide thin film transistors [J]. Sci. Adv. Mater., 2018, 10: 518
13 Tien C L, Lin H Y, Chang C K, et al. Effect of oxygen flow rate on the optical, electrical, and mechanical properties of DC sputtering ITO thin films [J]. Adv. Condens. Matter Phys., 2018, 2018: 2647282
14 Liu H N, Zhou P P, Zhang L N, et al. Effects of oxygen partial pressure on the structural and optical properties of undoped and Cu-doped ZnO thin films prepared by magnetron co-sputtering [J]. Mater. Lett., 2016, 164: 509
15 Bose S, Arokiyadoss R, Bhargav P B, et al. Modification of surface morphology of sputtered AZO films with the variation of the oxygen [J]. Mater. Sci. Semicon. Proc., 2018, 79: 135
16 Pattipaka S, Goud J P, Bharti G P, et al. Effect of oxygen partial pressure on nonlinear optical and electrical properties of BNT-KNNG composite thin films [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 2986
17 Liu X C, An Y K, Lin Z, et al. Effects of oxygen partial pressure on the microstructure, electrical and optical properties of the Sn-doped In2O3 thin films [J]. Mod. Phys. Lett., 2018, 32B: 1850284
18 Bierwagen O, White M E, Tsai M Y, et al. Plasma-assisted molecular beam epitaxy of high quality In2O3 (001) thin films on Y-stabilized ZrO2 (001) using in as an auto surfactant [J]. Appl. Phys. Lett., 2009, 95: 262105
19 Tikhii A A, Nikolaenko Y M, Zhikhareva Y I, et al. Influence of the thermal conditions of fabrication and treatment on the optical properties of In2O3 films [J]. Semiconductors, 2018, 52: 320
20 Zhao M J, Wu T Y, Xu Y C, et al. Effect of annealing on the electrical performance of indium gallium oxide thin-film transistors [J]. J. Xiamen Univ. Technol., 2019, 27(1): 41
20 赵铭杰, 吴天雨, 许英朝等. 退火对氧化铟镓薄膜晶体管电学特性的影响 [J]. 厦门理工学院学报, 2019, 27(1): 41
21 Hosen M M, Ullah A K M A, Haque M M, et al. Optical and electrical properties of crystalline indium tin oxide thin film deposited by vacuum evaporation technique [J]. Optoelectron. Lett., 2019, 15: 356
22 Saji K J, Jayaraj M K. Effect of oxygen partial pressure on optical and electrical properties of co-sputtered amorphous zinc indium tin oxide thin films [J]. Phys. Status Solidi, 2008, 205: 1625
23 Tantray F A, Agrawal A, Gupta M, et al. Effect of oxygen partial pressure on the structural and optical properties of ion beam sputtered TiO2 thin films [J]. Thin Solid Films, 2016, 619: 86
24 Kamat P V, Dimitrijevic N M, Nozik A J. Dynamic Burstein-Moss shift in semiconductor colloids [J]. J. Phys. Chem., 1989, 93: 2873
25 Woo S W, Byeol S H B, Choi J, et al. Effects of the process parameters on the properties of sputter-deposited tin oxide thin films [J]. J. Nanosci. Nanotechnol., 2019, 19: 1301
26 Le N M, Lee C S, Patil V, et al. Effects of oxygen partial pressure within the growth ambient on the properties and defect behavior of magnetron sputtered InCdO films [J]. Thin Solid Films, 2019, 682: 131
27 Kim J S, Oh B S, Piao M X, et al. Effects of low-temperature (120℃) annealing on the carrier concentration and trap density in amorphous indium gallium zinc oxide thin film transistors [J]. J. Appl. Phys., 2014, 116: 245302
28 Anzai H, Takahashi T, Suzuki M, et al. Unusual oxygen partial pressure dependence of electrical transport of single-crystalline metal oxide nanowires grown by the vapor-liquid-solid Process [J]. Nano Lett., 2019, 19: 1675
29 Peng S, Cao X, Pan J G, et al. X-ray photoelectron spectroscopy study of indium tin oxide films deposited at various oxygen partial pressures [J]. J. Electron. Mater., 2017, 46: 1405
30 Wang L K, Yu J Y, Wang L, et al. Effect of doping on the photoelectric properties of tin dioxide thin films [J]. J. Chin. Ceram. Soc., 2018, 46: 590
30 王立坤, 郁建元, 王丽等. 掺杂对二氧化锡薄膜光电性能的影响 [J]. 硅酸盐学报, 2018, 46: 590
31 Wang Y X, Li R W, Fan W, et al. Effect of annealing oxygen partial pressure on transmittance and conductivity of AZO thin films [J]. Chin. J. Mater. Res., 2018, 32: 861
31 王艳雪, 李瑞武, 范巍等. 退火氧分压对AZO薄膜的透光和导电性能的影响 [J]. 材料研究学报, 2018, 32: 861
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.