Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (3): 209-220    DOI: 10.11901/1005.3093.2020.228
  研究论文 本期目录 | 过刊浏览 |
Zr含量对铸造AlSi7Mg0.4合金力学性能的影响
张云翔1, 赵海东1(), 朱霖2, 李昌海2, 武汉琦2
1.华南理工大学 国家金属材料近净成形工程技术研究中心 广州 510640
2.中信戴卡股份有限公司 秦皇岛 066011
Effect of Zr Contents on Mechanical Properties of Cast AlSi7Mg0.4 Alloys
ZHANG Yunxiang1, ZHAO Haidong1(), ZHU Lin2, LI Changhai2, WU Hanqi2
1.National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
2.CITIC Dicastal Co. Ltd. , Qinhuangdao 066011, China
引用本文:

张云翔, 赵海东, 朱霖, 李昌海, 武汉琦. Zr含量对铸造AlSi7Mg0.4合金力学性能的影响[J]. 材料研究学报, 2021, 35(3): 209-220.
Yunxiang ZHANG, Haidong ZHAO, Lin ZHU, Changhai LI, Hanqi WU. Effect of Zr Contents on Mechanical Properties of Cast AlSi7Mg0.4 Alloys[J]. Chinese Journal of Materials Research, 2021, 35(3): 209-220.

全文: PDF(17417 KB)   HTML
摘要: 

研究了添加Zr元素的重力铸造AlSi7Mg0.4合金的微观组织和力学性能。结果表明,在含Zr的铸态合金中生成了(Al,Si)3(Zr,Ti)和π-Fe相,Zr的添加使合金的晶粒尺寸减小;经过T6热处理后富Fe相中的Mg和少量粗大的(Al,Si)3(Zr,Ti)相重溶到基体中,减小了金属间化合物的尺寸,生成了与基体有共格关系的含Zr析出相。含Zr合金的抗拉强度和伸长率达到332 MPa和8.7%,比不含Zr的合金分别提高了10%和90%。

关键词 金属材料AlSi7Mg0.4合金微观组织力学性能Zr含量(Al,Si)3(Zr,Ti)    
Abstract

Ingots of AlSi7Mg0.4 alloys with 0.06%, 0.14% and 0.20% Zr addition respectively were fabricated with gravity casting method. The microstructure analysis of the as-cast alloys shows that (Al, Si)3(Zr, Ti) and π-Fe phases formed in these alloys. Compared with the AlSi7Mg0.4 alloys without Zr, the grain size of the alloys containing Zr is smaller. Strengthening phase (Al, Si)3(Zr, Ti) precipitated in the alloys containing Zr during the solution treatment. After T6 heat treatment, a small amount of Mg in the Fe-rich intermetallics and a little part of coarse (Al, Si)3 (Zr, Ti) phases re-dissolved into the matrix, which decreased the intermetallics sizes. The tensile strength and elongation of the alloys containing Zr are 332 MPa and 8.7%, which are 10% and 90% higher than the alloy without Zr, respectively.

Key wordsmetallic materials    AlSi7Mg0.4 alloy    microstructure    mechanical properties    Zr contents    (Al, Si)3(Zr, Ti)
收稿日期: 2020-06-11     
ZTFLH:  TG166.3  
基金资助:广东省重点领域研发计划(2020B010186002)
作者简介: 张云翔,男,1996年生,硕士生
图1  铸件和拉伸试样的尺寸
AlloySiMgFeTiSrZrAl
17.130.410.140.150.013-Bal.
26.940.390.130.150.0170.06Bal.
36.890.400.130.130.0120.14Bal.
46.770.400.130.150.0170.20Bal.
表1  实验合金的化学成分
图2  4种合金的时效硬化曲线
图3  铸态合金的微观组织
AlloyGrain size/μmSDAS/μm
153.2516.64
251.6410.38
340.3310.70
437.3115.95
表2  Zr含量对晶粒尺寸和SDAS的影响
图4  Al-Zr二元合金的相图
图5  铸态合金的SEM显微组织
AlloyPhaseAlSiMgFeZrTiReferenceArea fraction
1π-Fe71.3717.118.852.67--[22]-
β-Fe89.376.67-3.96--[22]-
2π-Fe68.1725.734.931.17--[22]-
(Al, Si)3(Zr, Ti)85.188.060.98-3.292.49[10]<0.10%
3π-Fe68.6519.239.152.97--[22]-
(Al, Si)3(Zr, Ti)49.5427.67--17.954.84[10]0.12%
4π-Fe89.986.183.210.63--[22]-
(Al, Si)3(Zr, Ti)79.4910.93--6.443.14[10]0.33%
表3  铸态合金中金属间化合物的EDS结果和面积分数
图6  合金的面扫描分布图
图7  T6热处理合金的SEM显微组织
AlloyPhaseAlSiMgFeZrTiReferenceArea fraction
1β-Fe77.0612.82-10.12--[22]-
β-Fe-282.5811.590.385.45--[22]-
2β-Fe-286.449.55-4.01--[22]-
π-Fe85.6312.361.200.81--[22]-
(Al, Si)3(Zr, Ti)90.295.47--2.381.86[10]<0.01%
3β-Fe-285.528.430.195.86--[22]-
(Al, Si)3(Zr, Ti)69.5220.27--7.552.66[10]0.07%
4β-Fe-294.033.94-2.03--[22]-
(Al, Si)3(Zr, Ti)61.6425.42--7.905.04[10]0.21%
表4  T6热处理态合金中金属化合物的EDS结果和面积分数
图8  T6热处理合金的明场TEM组织
AlloyAverage length/nmCross-section/nm2Number density/nm-3
125.02±1.148.34±0.33(9.79±0.66)×10-5
226.14±1.168.58±0.29(9.95±0.47)×10-5
325.33±1.698.46±0.56(9.27±0.75)×10-5
426.68±1.138.05±0.20(9.97±0.59)×10-5
表5  T6热处理合金中β″析出相的平均长度、横截面积和数密度
图9  合金3中Al-Si-Zr-Ti析出相的亮场TEM图像和沿[010]Al轴对应的SADP
图10  合金4中Al-Si-Zr-Ti析出相的TEM照片、[001]Al轴上Al-Si-Zr-Ti相的快速傅里叶变换(FFT)图以及Al-Si-Zr-Ti析出相的TEM-EDS分析结果
AlloyAverage length/nmAspect/nmNumber density/nm-3
2313±336.59±0.03(3.15±0.40)×10-8
3302±526.36±0.50(6.10±1.77)×10-8
4300±226.10±0.41(6.18±1.60)×10-8
表6  T6热处理合金中Al-Si-Zr-Ti析出相的平均长度、长宽比和数密度
图11  高分辨透射电镜图:Al-Si-Zr-Ti沉淀相与α-Al基体(a)半共格和(c)共格界面,(b)和(d)相对应的IFFT图
AlloyAs castAfter T6 heat treatment
YS/MPaUTS/MPaE / %YS/MPaUTS/MPaE / %
1130±10184±125.14±1.06278±11302±134.55±1.48
2149±5213±77.95±0.97305±6332±58.67±1.09
3135±13195±136.21±1.52301±12316±115.05±1.49
4137±8182±104.13±0.95280±15292±152.94±1.38
表7  不同Zr含量铸态和T6热态合金的力学性能
图12  合金2的铸态(a)、T6热处理态(b)的拉伸断口形貌和SEM-EDS分析结果(c,d)以及合金4的铸态(e)、T6热处理态(f)的的拉伸断口形貌和SEM-EDS分析结果(g,h)
1 Baradarani B, Raiszadeh R. Precipitation hardening of cast Zr-containing A356 aluminium alloy [J]. Mater. Des., 2011, 32: 935
2 Liu Y Q, Jie W Q, Wang S N, et al. Investigation of rotary bending gigacycle fatigue properties of Al-7Si-0.3Mg alloys [J]. Chin. J. Mater. Res., 2012, 26: 284
2 刘永勤, 介万奇, 王善娜等. Al-7Si-0.3Mg铸造合金的旋转弯曲疲劳性能研究 [J]. 材料研究学报, 2012, 26: 284
3 Prach O, Trudonoshyn O, Randelzhofer P, et al. Effect of Zr, Cr and Sc on the Al-Mg-Si-Mn high-pressure die casting alloys [J]. Mater. Sci. Eng., 2019, 759A: 603
4 Teng G B, Liu C Y, Li J, et al. Effect of Sc on microstructure and mechanical property of 7055 Al-alloy [J]. Chin. J. Mater. Res., 2018, 32: 112
4 滕广标, 刘崇宇, 李剑等. 添加Sc对7055铝合金微观结构和力学性能的影响 [J]. 材料研究学报, 2018, 32: 112
5 Xu C, Xiao W L, Zheng R X, et al. The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al-Si-Mg alloy [J]. Mater. Des., 2015, 88: 485
6 Colombo M, Gariboldi E, Morri A. Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25% Er [J]. Mater. Sci. Eng., 2018, 713A: 151
7 Mahmudi R, Sepehrband P, Ghasemi H M. Improved properties of A319 aluminum casting alloy modified with Zr [J]. Mater. Lett., 2006, 60: 2606
8 Huang H L, Dong Y H, Xing Y, et al. Low cycle fatigue behaviour at 300℃ and microstructure of Al-Si-Mg casting alloys with Zr and Hf additions [J]. J. Alloy. Compd., 2018, 765: 1253
9 Jia Z H, Huang H L, Wang X L, et al. Hafnium in aluminum alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 105
10 Rahimian M, Amirkhanlou S, Blake P, et al. Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys [J]. Mater. Sci. Eng., 2018, 721A: 328
11 Yuan W H, Liang Z Y. Effect of Zr addition on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor [J]. Mater. Des., 2011, 32: 4195
12 Meng Y, Cui J Z, Zhao Z H, et al. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting [J]. Mater. Charact., 2014, 92: 138
13 Zhao Q, Wang S X. Aluminum Alloy Selection and Design [M]. Beijing: Chemical Industry Press, 2017: 53
13 赵晴, 王帅星. 铝合金选用与设计 [M]. 北京: 化学工业出版社, 2017: 53
14 Wang F, Liu Z L, Qiu D, et al. The influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys [J]. Metall. Mater. Trans., 2015, 46A: 505
15 Wang F, Liu Z L, Qiu D, et al. Revisiting the role of peritectics in grain refinement of Al alloys [J]. Acta Mater., 2013, 61: 360
16 Wang F, Qiu D, Liu Z L, et al. The grain refinement mechanism of cast aluminium by zirconium [J]. Acta Mater., 2013, 61: 5636
17 Zhang Y, Gao K Y, Wen S P, et al. The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al-Er binary alloy [J]. J. Alloy. Compd., 2014, 610: 27
18 Quested T E, Dinsdale A T, Greer A L. Thermodynamic modelling of growth-restriction effects in aluminium alloys [J]. Acta Mater., 2005, 53: 1323
19 Ceschini L, Morri A, Morri A, et al. Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy [J]. Mater. Des., 2009, 30: 4525
20 Knipling K E, Dunand D C, Seidman D N. Criteria for developing castable, creep-resistant aluminum-based alloys-A review [J]. Z. Metallkd., 2006, 97: 246
21 Gustafsson G, Thorvaldsson T, Dunlop G L. The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys [J]. Metall. Trans., 1986, 17A: 45
22 Beroual S, Boumerzoug Z, Paillard P, et al. Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast alloys [J]. J. Alloy. Compd., 2019, 784: 1026
23 Marioara C D, Andersen S J, Zandbergen H W, et al. The influence of alloy composition on precipitates of the Al-Mg-Si system [J]. Metall. Mater. Trans., 2005, 36A: 691
24 Gao T, Ceguerra A, Breen A, et al. Precipitation behaviors of cubic and tetragonal Zr-rich phase in Al-(Si-) Zr alloys [J]. J. Alloy. Compd., 2016, 674: 125
25 Gao T, Liu X F. Replacement with Each Other of Ti and Zr in the Intermetallics of Al-(Si-)Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2013, 29: 291
26 Lityñska L, Abou-Ras D, Kostorz G, et al. TEM and HREM study of Al3Zr precipitates in an Al-Mg-Si-Zr alloy [J]. J. Microsc., 2006, 223: 182
27 Huang H L. The effects of Zr and Hf additions on microstructure and high temperature mechanical properties of Al-Si-Mg casting alloy [D]. Chongqing: Chongqing University, 2018
27 黄惠兰. Zr和Hf元素对Al-Si-Mg铸造合金微观组织和高温力学性能的影响 [D]. 重庆: 重庆大学, 2018
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.