Zr含量对铸造AlSi7Mg0.4合金力学性能的影响
1.
2.
Effect of Zr Contents on Mechanical Properties of Cast AlSi7Mg0.4 Alloys
1.
2.
通讯作者: 赵海东,教授,hdzhao@scut.edu.cn,研究方向为铸造铝合金及数值模拟
收稿日期: 2020-06-11 修回日期: 2020-07-23 网络出版日期: 2021-04-09
基金资助: |
|
Corresponding authors: ZHAO Haidong, Tel: (020)87112948-302, E-mail:hdzhao@scut.edu.cn
Received: 2020-06-11 Revised: 2020-07-23 Online: 2021-04-09
作者简介 About authors
张云翔,男,1996年生,硕士生
研究了添加Zr元素的重力铸造AlSi7Mg0.4合金的微观组织和力学性能。结果表明,在含Zr的铸态合金中生成了(Al,Si)3(Zr,Ti)和π-Fe相,Zr的添加使合金的晶粒尺寸减小;经过T6热处理后富Fe相中的Mg和少量粗大的(Al,Si)3(Zr,Ti)相重溶到基体中,减小了金属间化合物的尺寸,生成了与基体有共格关系的含Zr析出相。含Zr合金的抗拉强度和伸长率达到332 MPa和8.7%,比不含Zr的合金分别提高了10%和90%。
关键词:
Ingots of AlSi7Mg0.4 alloys with 0.06%, 0.14% and 0.20% Zr addition respectively were fabricated with gravity casting method. The microstructure analysis of the as-cast alloys shows that (Al, Si)3(Zr, Ti) and π-Fe phases formed in these alloys. Compared with the AlSi7Mg0.4 alloys without Zr, the grain size of the alloys containing Zr is smaller. Strengthening phase (Al, Si)3(Zr, Ti) precipitated in the alloys containing Zr during the solution treatment. After T6 heat treatment, a small amount of Mg in the Fe-rich intermetallics and a little part of coarse (Al, Si)3 (Zr, Ti) phases re-dissolved into the matrix, which decreased the intermetallics sizes. The tensile strength and elongation of the alloys containing Zr are 332 MPa and 8.7%, which are 10% and 90% higher than the alloy without Zr, respectively.
Keywords:
本文引用格式
张云翔, 赵海东, 朱霖, 李昌海, 武汉琦.
ZHANG Yunxiang, ZHAO Haidong, ZHU Lin, LI Changhai, WU Hanqi.
微合金化是提高铸造铝合金性能的主要方法之一。研究表明,Al3M型金属间化合物能提高铸造铝合金的性能[3~8]。能在铝合金中生成Al3M型金属间化合物的过渡金属元素,有Sc[3~5]、Y、Ti、Zr[3~8]和Hf[8,9]。Prach[3]等发现,添加在高压压铸Al-Mg-Si-Mn合金中Zr能促进枝晶异相形核,并提高铸造铝合金的高温力学性能[10,11]。高温力学性能的提高,主要归因于二次枝晶间距的减小、晶粒的细化和含Zr第二相的生成。Yi等[12]研究了0.15%Zr(质量分数)对铸造Al-1.6Mg-1.2Si-1.1Cu-0.15Cr合金的力学性能的影响。结果表明,Al3Zr相可将晶粒尺寸减小约29%,并在凝固过程中促进等轴晶组织的形成。
铸造Al-7Si-0.4Mg合金,是一种应用比较广泛的材料。添加Zr元素的铸造Al-7Si-0.4Mg合金热处理后纳米析出相的特征(定量尺寸、晶体结构)和室温力学性能等性能,尚需进一步深入研究。本文研究Zr含量对Al-7Si-0.4Mg合金的组织和室温力学性能的影响,分析不同Zr含量合金的初生α-Al晶粒特征以及含Zr金属间化合物和时效析出相的变化,并讨论微观组织对力学性能的影响。
1 实验方法
图1
表1 实验合金的化学成分
Table 1
Alloy | Si | Mg | Fe | Ti | Sr | Zr | Al |
---|---|---|---|---|---|---|---|
1 | 7.13 | 0.41 | 0.14 | 0.15 | 0.013 | - | Bal. |
2 | 6.94 | 0.39 | 0.13 | 0.15 | 0.017 | 0.06 | Bal. |
3 | 6.89 | 0.40 | 0.13 | 0.13 | 0.012 | 0.14 | Bal. |
4 | 6.77 | 0.40 | 0.13 | 0.15 | 0.017 | 0.20 | Bal. |
图2
将取自拉伸试样的金相样品用砂纸打磨、抛光后用体积分数为0.5%的HF腐蚀10 s,然后进行Leica DMI 5000M光学显微镜观察。用EBSD表征晶粒的结构。用FEI Quanta 200环境扫描电子显微镜和能谱仪鉴定合金中金属间化合物的形态、分布和化学组成。使用FEI Tecnai G2 F20透射电子显微镜进一步表征固溶和T6热处理合金的微观结构。使用Image Pro Plus 6.0软件定量分析初晶α相二次枝晶间距(SDAS)、金属间化合物和时效析出相的特征。用SHIMADZ AG-X 100kn万能材料试验机进行拉伸实验,拉伸速度为1 mm/min,并用FEI Quanta 200环境扫描电镜观察断口的形貌。
2 微观组织
2.1 α-Al晶粒
图3
图3
铸态合金的微观组织
Fig.3
Microstructures of as-cast alloys (a) alloy 1, (b) alloy 2, (c) alloy 3 and (d) alloy 4
表2 Zr含量对晶粒尺寸和SDAS的影响
Table 2
Alloy | Grain size/μm | SDAS/μm |
---|---|---|
1 | 53.25 | 16.64 |
2 | 51.64 | 10.38 |
3 | 40.33 | 10.70 |
4 | 37.31 | 15.95 |
图4
式中
图5
图5
铸态合金的SEM显微组织
Fig.5
SEM micrograph of the as-cast alloys (a) alloy 1, (b) alloy 2, (c) alloy 3 and (d) alloy 4
合金的化学成分和凝固时的冷却速率,影响SDAS[19]。由于合金的铸造参数相同,其化学成分差异太小不足以引起熔体热物理性能的变化。因此,Zr的加入是使SDAS减小的原因之一。Zr在α-Al基体中的扩散速率较低[20]且在枝晶凝固之前发生聚集[6],使枝晶尖端出现成分过冷从而阻碍了枝晶生长,使二次枝晶间距减小。由图4可见,合金4的Zr含量与发生包晶反应的Zr含量上限(0.27%)接近,生成α-Al相的相变温度范围很窄,合金很快进入(Al,Si)3(Zr,Ti)和α-Al的两相区间。添加的Zr,主要生成了(Al,Si)3(Zr,Ti)相。因此由表3可知,合金4的(Al,Si)3(Zr,Ti)相分数比合金3高两倍多,大量的Zr均以(Al,Si)3(Zr,Ti)形式存在,α-Al生长时液相中残留的Zr很少而不足以产生成分过冷,因此合金4的SDAS与不含Zr的合金接近。图6给出了合金3和4的面扫描结果,进一步证明合金4中大量的Zr以粗大的(Al,Si)3(Zr,Ti)形式存在,在α-Al基体中较少。
表3 铸态合金中金属间化合物的EDS结果和面积分数
Table 3
Alloy | Phase | Al | Si | Mg | Fe | Zr | Ti | Reference | Area fraction |
---|---|---|---|---|---|---|---|---|---|
1 | π-Fe | 71.37 | 17.11 | 8.85 | 2.67 | - | - | [22] | - |
β-Fe | 89.37 | 6.67 | - | 3.96 | - | - | [22] | - | |
2 | π-Fe | 68.17 | 25.73 | 4.93 | 1.17 | - | - | [22] | - |
(Al, Si)3(Zr, Ti) | 85.18 | 8.06 | 0.98 | - | 3.29 | 2.49 | [10] | <0.10% | |
3 | π-Fe | 68.65 | 19.23 | 9.15 | 2.97 | - | - | [22] | - |
(Al, Si)3(Zr, Ti) | 49.54 | 27.67 | - | - | 17.95 | 4.84 | [10] | 0.12% | |
4 | π-Fe | 89.98 | 6.18 | 3.21 | 0.63 | - | - | [22] | - |
(Al, Si)3(Zr, Ti) | 79.49 | 10.93 | - | - | 6.44 | 3.14 | [10] | 0.33% |
图6
图6
合金的面扫描分布图
Fig.6
Area-scan maps of the distribution of studied alloys (a~c) alloy 3, (d~f) alloy 4
2.2 金属间化合物
图7
图7
T6热处理合金的SEM显微组织
Fig.7
SEM micrograph of the T6 heat-treated alloys (a) alloy 1, (b) alloy 2, (c) alloy 3 and (d) alloy 4
表4 T6热处理态合金中金属化合物的EDS结果和面积分数
Table 4
Alloy | Phase | Al | Si | Mg | Fe | Zr | Ti | Reference | Area fraction |
---|---|---|---|---|---|---|---|---|---|
1 | β-Fe | 77.06 | 12.82 | - | 10.12 | - | - | [22] | - |
β-Fe-2 | 82.58 | 11.59 | 0.38 | 5.45 | - | - | [22] | - | |
2 | β-Fe-2 | 86.44 | 9.55 | - | 4.01 | - | - | [22] | - |
π-Fe | 85.63 | 12.36 | 1.20 | 0.81 | - | - | [22] | - | |
(Al, Si)3(Zr, Ti) | 90.29 | 5.47 | - | - | 2.38 | 1.86 | [10] | <0.01% | |
3 | β-Fe-2 | 85.52 | 8.43 | 0.19 | 5.86 | - | - | [22] | - |
(Al, Si)3(Zr, Ti) | 69.52 | 20.27 | - | - | 7.55 | 2.66 | [10] | 0.07% | |
4 | β-Fe-2 | 94.03 | 3.94 | - | 2.03 | - | - | [22] | - |
(Al, Si)3(Zr, Ti) | 61.64 | 25.42 | - | - | 7.90 | 5.04 | [10] | 0.21% |
2.3 纳米析出相
其中
图8
图8
T6热处理合金的明场TEM组织
Fig.8
The bright field TEM (BF-TEM) micrographs of the T6 treated alloys (a) alloy 1, (b) alloy 2, (c) alloy 3 and (d) alloy 4
表5 T6热处理合金中β″析出相的平均长度、横截面积和数密度
Table 5
Alloy | Average length/nm | Cross-section/nm2 | Number density/nm-3 |
---|---|---|---|
1 | 25.02±1.14 | 8.34±0.33 | (9.79±0.66)×10-5 |
2 | 26.14±1.16 | 8.58±0.29 | (9.95±0.47)×10-5 |
3 | 25.33±1.69 | 8.46±0.56 | (9.27±0.75)×10-5 |
4 | 26.68±1.13 | 8.05±0.20 | (9.97±0.59)×10-5 |
图9a给出了合金中含Zr的析出相。图9b给出了对应的选取电子衍射图([010]方向),表明了D022相的存在。图9a给出的是高倍下含Zr析出相的形貌,TEM-EDS鉴定其为(Al,Si)3(Zr,Ti)相。Zr在二元Al-Zr体系[24]中生成了Al3Zr析出相,但是加入大量的Si会生成(Al, Si)3Zr相[24,25];在Al-(Si-)Ti-Zr合金的富Ti相和富Zr相中,Ti和Zr可相互取代[25];Al3Zr相为球形,其直径为20~30 nm[26]。本文合金中(Al,Si)3(Zr,Ti)棒状析出物的尺寸为80~300 nm,析出物的晶体结构属于四方晶系。图10a表明,细长的(Al,Si)3(Zr,Ti)沉淀相其尺寸约为250 nm。图10b中对应的快速傅里叶变换图证实,这些粒子为四方晶系中的D022结构。表6列出了对合金中(Al,Si)3(Zr,Ti)沉淀相的形态定量分析的结果。可以看出,随着Zr含量的提高析出相变得短而粗,且数密度增加。
图9
图9
合金3中Al-Si-Zr-Ti析出相的亮场TEM图像和沿[010]Al轴对应的SADP
Fig.9
Bright field TEM images of alloy 3 (a) Al-Si-Zr-Ti precipitates and (b) corresponding SADP along [010] Al axis
图10
图10
合金4中Al-Si-Zr-Ti析出相的TEM照片、[001]Al轴上Al-Si-Zr-Ti相的快速傅里叶变换(FFT)图以及Al-Si-Zr-Ti析出相的TEM-EDS分析结果
Fig.10
TEM images of alloy 4 (a) the Al-Si-Zr-Ti precipitate, (b) fast Fourier transformation (FFT) of Al-Si-Zr-Ti phase along [001] Al axis and (c) TEM-EDS analysis of the Al-Si-Zr-Ti precipitate
表6 T6热处理合金中Al-Si-Zr-Ti析出相的平均长度、长宽比和数密度
Table 6
Alloy | Average length/nm | Aspect/nm | Number density/nm-3 |
---|---|---|---|
2 | 313±33 | 6.59±0.03 | (3.15±0.40)×10-8 |
3 | 302±52 | 6.36±0.50 | (6.10±1.77)×10-8 |
4 | 300±22 | 6.10±0.41 | (6.18±1.60)×10-8 |
图11
图11
高分辨透射电镜图:Al-Si-Zr-Ti沉淀相与α-Al基体(a)半共格和(c)共格界面,(b)和(d)相对应的IFFT图
Fig.11
HRTEM micrographs (a) semicoherent and (c) coherent interfaces of the Al-Si-Zr-Ti precipitate with α-Al matrix, (b) and (d) corresponding IFFT
式中
3 力学性能和断口的形貌
3.1 力学性能
表7 不同Zr含量铸态和T6热态合金的力学性能
Table 7
Alloy | As cast | After T6 heat treatment | |||||
---|---|---|---|---|---|---|---|
YS/MPa | UTS/MPa | E / % | YS/MPa | UTS/MPa | E / % | ||
1 | 130±10 | 184±12 | 5.14±1.06 | 278±11 | 302±13 | 4.55±1.48 | |
2 | 149±5 | 213±7 | 7.95±0.97 | 305±6 | 332±5 | 8.67±1.09 | |
3 | 135±13 | 195±13 | 6.21±1.52 | 301±12 | 316±11 | 5.05±1.49 | |
4 | 137±8 | 182±10 | 4.13±0.95 | 280±15 | 292±15 | 2.94±1.38 |
在添加Zr的合金基体中生成了两种不同且均匀分布的纳米强化相β″和(Al,Si)3(Zr,Ti)。由于加入Zr后β″相数量没有明显的变化(表5),4种合金性能变化主要受新析出相的影响。Zr含量的提高使(Al,Si)3(Zr,Ti)析出相数密度增加(表6),使合金的强度提高。
3.2 断口的形貌
图12
图12
合金2的铸态(a)、T6热处理态(b)的拉伸断口形貌和SEM-EDS分析结果(c,d)以及合金4的铸态(e)、T6热处理态(f)的的拉伸断口形貌和SEM-EDS分析结果(g,h)
Fig.12
Tensile fracture morphology (a, b) and SEM-EDS analysis (c, d) of as cas state and T6 heat treatment state of alloy 2 and Tensile fracture morphology (e, f) and SEM-EDS analysis (g, h) of as cas and T6 heat treatment of alloy 4
4 结论
(1) 在添加Zr的铸态AlSi7Mg0.4合金中生成了(Al,Si)3(Zr,Ti)金属间化合物,经过T6热处理后析出了D022结构的(Al,Si)3(Zr,Ti)纳米析出相。(Al,Si)3(Zr,Ti)相与Al基体的共格关系促进α-Al异质形核,因此随着Zr含量的提高合金的晶粒细化。
(2) 添加Zr使合金的SDAS降低,但是Zr含量高于0.20%的合金其SDAS反而增大,因为合金发生包晶反应生成了大量的(Al,Si)3(Zr,Ti)相,残留在液相中含量较低的Zr降低了Zr在枝晶前沿聚集形成的成分过冷,使枝晶粗化。
(3) 粗大的(Al,Si)3(Zr,Ti)金属间化合物降低了合金的力学性能。铸造AlSi7Mg0.4Zr0.06合金中有晶粒较小的α-Al和SDAS以及少量的(Al,Si)3(Zr,Ti)金属间化合物,其力学性能最优,抗拉强度、屈服强度和伸长率分别达到332、305 MPa和8.67%。
参考文献
Precipitation hardening of cast Zr-containing A356 aluminium alloy
[J].
Investigation of rotary bending gigacycle fatigue properties of Al-7Si-0.3Mg alloys
[J].
Al-7Si-0.3Mg铸造合金的旋转弯曲疲劳性能研究
[J].
Effect of Zr, Cr and Sc on the Al-Mg-Si-Mn high-pressure die casting alloys
[J].
Effect of Sc on microstructure and mechanical property of 7055 Al-alloy
[J].
添加Sc对7055铝合金微观结构和力学性能的影响
[J].
The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al-Si-Mg alloy
[J].
Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25% Er
[J].
Improved properties of A319 aluminum casting alloy modified with Zr
[J].
Low cycle fatigue behaviour at 300℃ and microstructure of Al-Si-Mg casting alloys with Zr and Hf additions
[J].
Hafnium in aluminum alloys: A review
[J].
Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys
[J].
Effect of Zr addition on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor
[J].
Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting
[J].
The influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys
[J].
Revisiting the role of peritectics in grain refinement of Al alloys
[J].
The grain refinement mechanism of cast aluminium by zirconium
[J].
The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al-Er binary alloy
[J].
Thermodynamic modelling of growth-restriction effects in aluminium alloys
[J].
Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy
[J].
Criteria for developing castable, creep-resistant aluminum-based alloys-A review
[J]. Z
The influence of Fe and Cr on the microstructure of cast Al-Si-Mg alloys
[J].
Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast alloys
[J].
The influence of alloy composition on precipitates of the Al-Mg-Si system
[J].
Precipitation behaviors of cubic and tetragonal Zr-rich phase in Al-(Si-) Zr alloys
[J].
Replacement with Each Other of Ti and Zr in the Intermetallics of Al-(Si-)Ti-Zr alloys
[J].
TEM and HREM study of Al3Zr precipitates in an Al-Mg-Si-Zr alloy
[J]. J
/
〈 |
|
〉 |
