Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (3): 221-230    DOI: 10.11901/1005.3093.2020.382
  研究论文 本期目录 | 过刊浏览 |
CsTi2NbO7@N-TiO2杂化核壳结构的制备及其可见光催化性能
程婷1,2, 董鹏玉2(), 高欣1,2, 孟承启3, 王艳3, 陈小卫3, 张蓓蓓3, 奚新国3()
1.江苏大学材料科学与工程学院 镇江 212013
2.盐城工学院材料科学与工程学院 盐城 224051
3.盐城工学院化学化工学院 盐城 224051
Synthesis and Visible-light-driven Photocatalytic Activity of CsTi2NbO7@N-doped TiO2 Hybrid Core-shell Structure
CHENG Ting1,2, DONG Pengyu2(), GAO Xin1,2, MENG Chengqi3, WANG Yan3, CHEN Xiaowei3, ZHANG Beibei3, XI Xinguo3()
1.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2.School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
3.School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
引用本文:

程婷, 董鹏玉, 高欣, 孟承启, 王艳, 陈小卫, 张蓓蓓, 奚新国. CsTi2NbO7@N-TiO2杂化核壳结构的制备及其可见光催化性能[J]. 材料研究学报, 2021, 35(3): 221-230.
Ting CHENG, Pengyu DONG, Xin GAO, Chengqi MENG, Yan WANG, Xiaowei CHEN, Beibei ZHANG, Xinguo XI. Synthesis and Visible-light-driven Photocatalytic Activity of CsTi2NbO7@N-doped TiO2 Hybrid Core-shell Structure[J]. Chinese Journal of Materials Research, 2021, 35(3): 221-230.

全文: PDF(11257 KB)   HTML
摘要: 

将CsTi2NbO7与异丙醇钛混合后与尿素在空气中煅烧制备出CsTi2NbO7@N-TiO2核壳杂化材料,用XRD、SEM、TEM、UV-Vis DRS和XPS等手段对样品进行了表征。结果表明,N掺杂使TiO2带隙变窄和吸收边红移,实现了可见光响应。杂化、核壳结构和N掺杂的协同作用不仅使CsTi2NbO7@N-TiO2杂化核壳结构材料具有较强的可见光吸收特性,异质结面的存在还导致光生载流子分离和迁移效率增强,从而提高了可见光降解亚甲基蓝(MB)的光催化活性,其反应速率常数约为CsTi2NbO7的5.8倍。同时,这种材料还具有良好的光催化循环稳定性。

关键词 无机非金属材料核壳结构氮掺杂二氧化钛可见光光降解    
Abstract

A novel CsTi2NbO7@N-TiO2 core-shell hybrid material was successfully prepared by mixing CsTi2NbO7 with titanium isopropoxide and then calcining with urea in atmosphere. The prepared products were characterized by means of X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible diffuse reflectance absorption spectrum (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS). It was found that the N doping resulted in the shortening of the band gap of TiO2 and the red-shift of absorption edge, thus achieving the visible light response. Because of the synergistic effect of hybridization, core-shell structure, and N doping, the as-prepared CsTi2NbO7@N-TiO2 hybrid core-shell structural materials not only have strong visible absorption properties, but also exhibit enhanced photocatalytic activity for degradation of methylene blue (MB) under visible light irradiation, resulting from the improvement of carrier separation and migration efficiency due to the existence of the built-in electric field. Moreover, the reaction rate constant of CsTi2NbO7@N-TiO2 hybrid core-shell structural material is about 5.8 times that of CsTi2NbO7. Therefore, it shows good photocatalytic cycle stability.

Key wordsinorganic non-metallic materials    core-shell structure    nitrogen doping    titanium dioxide    Visible-light photo-degradation
收稿日期: 2020-09-09     
ZTFLH:  O643  
基金资助:国家自然科学基金(51772258);国家重点研发计划(2016YFC0209202);住房和城乡建设部科学技术项目(2018-K1-004);江苏省研究生科研与实践创新计划项目(SJCX19_1037,KYCX20_2965)
作者简介: 程婷,女,1996年生,硕士生
图1  CsTi2NbO7的晶体结构[24]
图2  CsTi2NbO7@N-TiO2核壳结构的设计原理
图3  CsTi2NbO7、TiO2、TNT和TNNT样品的XRD谱
图4  样品CsTi2NbO7和TNNT的SEM照片
图5  TNNT的透射电镜照片和高分辨率透射电镜照片
图6  TNNT样品的XPS谱
图7  不同样品的紫外-可见漫反射吸收光谱
图8  CsTi2NbO7、TNT和TNNT样品的光电流响应
图9  不同样品的可见光催化MB溶液降解和光催化反应速率常数
图10  在可见光照射下样品TNNT不同降解时间后MB溶液的紫外-可见吸收光谱(插图为MB溶液的颜色随照射时间变化图)和光催化降解MB的循环稳定性
图11  TNNT可见光降解MB机理的示意图
1 Chen Y, Lu C, Xu L, et al. Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties [J]. CrystEngComm. 2010, 12: 3740
2 Xu L, Yang X, Zhai Z, et al. EDTA-mediated shape-selective synthesis of Bi2WO6 hierarchical self-assemblies with high visible-light-driven photocatalytic activities [J]. CrystEngComm. 2011, 13: 7267
3 Zhu G, Hojamberdiev M, Tan C, et al. Photodegradation of organic dyes with anatase TiO2 nanoparticles-loaded BiOCl nanosheets with exposed {001} facets under simulated solar light [J]. Materials Chemistry and Physics. 2014, 147: 1146
4 Du G, Guo Z, Wang S, et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries [J]. Chemical communications. 2010, 46: 1106
5 Pelaez M, Nolan N T, Pillai S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications [J]. Applied Catalysis B: Environmental. 2012, 125: 331
6 Linsebigler A L, Lu G, Yates Jr T, Photocatalysis on TiO2surfaces: principles, mechanisms, and selected results [J]. Chemical reviews. 1995, 95: 735
7 Zhang Y C, Yang M, Zhang G, et al. HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr (VI) in water [J]. Applied Catalysis B: Environmental. 2013, 142: 249
8 Zhang Y C, Li J, Xu H Y, One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI) [J]. Applied Catalysis B: Environmental. 2012, 123: 18
9 Wang S, Yun J H, Luo B, et al. Recent progress on visible light responsive heterojunctions for photocatalytic applications [J]. Journal of Materials Science & Technology. 2017, 33: 1
10 He J, Li Q, Tang Y, et al. Characterization of HNbMoO6, HNbWO6 and HTiNbO5 as solid acids and their catalytic properties for esterification reaction [J]. Applied Catalysis A: General. 2012, 443: 145
11 Zhang L, Hu C, Zhang J, et al. Sulfur and iron Co-doped titanoniobate nanosheets: a novel efficient solid acid catalyst for alcoholysis of styrene epoxide at room temperature [J]. Chemical communications. 2013, 49: 7507
12 He J, Xu A, Hu L, et al. Layered KTiNbO5 photocatalyst modified with transitional metal ions (Mn2+, Ni2+): Investigation of microstructure and photocatalytic reaction pathways for the oxidation of dimethyl sulfide and ethyl mercaptan [J]. Powder Technology. 2015, 270: 154
13 Zhang G, Lin B, Yang W, et al. Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer [J]. RSC Advances. 2015, 5: 5823
14 Liu C, Zhu H, Zhu Y, et al. Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity [J]. Applied Catalysis B: Environmental. 2018, 228: 54
15 Li H, Li N, Wang M, et al. Synthesis of novel and stable g-C3N4-Bi2WO6 hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation [J]. Royal Society open science. 2018, 5: 171419
16 Li J, Xu L, He J, et al. Synthesis, characterization and enhanced visible-light photocatalytic activity of novel NiO/HTi2NbO7 nanocomposite [J]. New Journal of Chemistry. 2018, 42: 10279
17 Cai W, Lu G, He J, et al. The adsorption feature and photocatalytic oxidation activity of K1-2xMxTiNbO5 (M=Mn, Ni) for methyl mercaptan in methane [J]. Ceramics International, 2012, 38: 3167
18 Cheng K S, Li Y, Tian H, et al. Synthesis and Photocatalytic Performance of Heterostructured Nano-Composite Bi4Ti3O12/TiO2 [J]. Chin. J. Mater. Res., 2014, 28: 503
18 陈侃松, 黎旸, 田寒等. Bi4Ti3O12/TiO2异质结的制备及其光催化性能 [J]. 材料研究学报, 2014, 28: 503
19 Chen H Y, He F, Zhang X H, et al. Photocatalytic Reduction Properties of Palladium and Nitrogen Co-Doped TiO2 Thin Films [J]. Chin. J. Mater. Res., 2017, 31: 255
19 陈海洋, 何菲, 张旭海等. 钯氮共掺杂TiO2薄膜的光催化还原性能 [J]. 材料研究学报. 2017, 31: 255
20 Asahi R, Morikawa T, Irie H, et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects [J]. Chemical reviews. 2014, 114: 9824
21 Trevisan V, Olivo A, Pinna F, Signoretto M, et al. CN/TiO2 photocatalysts: Effect of Co-doping on the catalytic performance under visible light [J]. Applied Catalysis B: Environmental. 2014, 160: 152
22 Liu C, Wu L, Chen J, et al. The nanocomposite of polyaniline and nitrogen-doped layered HTiNbO5 with excellent visible-light photocatalytic performance [J]. Physical Chemistry Chemical Physics. 2014, 16: 13409
23 Liu C, Zhang C, Wang J, et al. N-doped CsTi2NbO7@ g-C3N4 core-shell nanobelts with enhanced visible light photocatalytic activity [J]. Materials Letters. 2018, 217: 235
24 Hervieu M, Raveau B. A layer structure: The titanoniobate CsTi2NbO7 [J]. Journal of Solid State Chemistry. 1980, 32: 161
25 Dias A S, Lima S, Carriazo D, et al. Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural [J]. Journal of Catalysis. 2006, 244: 23
26 Takagaki A, Yoshida T, Lu D, et al. Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts [J]. The Journal of Physical Chemistry B. 2004, 108: 11549
27 Jang J S, Kim H G, Reddy V R, et al. Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O5 layered compounds [J]. Journal of Catalysis. 2005, 231: 213
28 Zhang Y, Wang N, He J, et al. Synthesis of CeO2/e-HTiNbO5 nanocomposite and its application for photocatalytic oxidation desulfurization [J]. Nano. 2016, 11: 1650018
29 Liu C, Han R, Ji H, et al. S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity [J]. Physical Chemistry Chemical Physics. 2016, 18: 801
30 Li J, Xu L, He J, et al. The structure feature of novel Cu2O/e-HTi2NbO7 Nanocomposite and their enhanced photocatalytic Activity [J]. Nano. 2017, 12: 1750100
31 Liu Y, Zhang M, Li L, et al. One-dimensional visible-light-driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frameworks and Bi2XO6 (X=Mo, W) nanosheets [J]. Applied Catalysis B: Environmental. 2014, 160: 757
32 Zhang L, Jing D, She X, et al. Heterojunctions in g-C3N4/TiO2 (B) nanofibres with exposed (001) plane and enhanced visible-light photoactivity [J]. Journal of Materials Chemistry A. 2014, 2: 2071
33 Liu C., Wu Q., Ji M., et al. Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity [J]. Journal of Alloys & Compounds. 2017, 723: 1121
34 Liu C, Xu Q, Zhang Q, et al. Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity [J]. Journal of Materials Science. 2019, 54: 2458
35 Wu T, Zhang Q, Hou Y, et al. Monocopper Doping in Cd-In-S Supertetrahedral Nanocluster via Two-Step Strategy and Enhanced Photoelectric Response [J]. Journal of the American Chemical Society. 2013, 135(28): 10250
36 Wu N, Wang J, Tafen D N, et al. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts [J]. Journal of the American Chemical Society. 2010, 132: 6679
37 Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications [J]. Solar Energy Materials and Solar Cells. 2006, 90: 2011
38 Ye L, Liu J, Jiang Z, et al. The pure shape effect with a removing facet effect of single-crystalline anatase TiO2 (101) for photocatalytic application [J]. Nanoscale. 2013, 5: 9391
39 Lee S H, Yamasue E, Ishihara K N, et al. Photocatalysis and surface doping states of N-doped TiOx films prepared by reactive sputtering with dry air [J]. Applied Catalysis B: Environmental. 2010, 93(3-4): 217
40 Li H, Li J, Huo Y, Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions [J]. The Journal of Physical Chemistry B., 2006, 110: 1559
41 Yang X, Cao C, Erickson L, et al. Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation [J]. Applied Catalysis B: Environmental., 2009, 91: 657
42 Ou H H, Lo S L, Liao C H. N-Doped TiO2 Prepared from Microwave-Assisted Titanate Nanotubes (NaxH2-xTi3O7): The Effect of Microwave Irradiation during TNT Synthesis on the Visible Light Photoactivity of N-Doped TiO2 [J]. The Journal of Physical Chemistry C, 2011, 115: 4000
43 Lee H U, Lee S C, Choi S, et al. Influence of visible-light irradiation on physicochemical and photocatalytic properties of nitrogen-doped three-dimensional (3D) titanium dioxide [J]. Journal of hazardous materials, 2013, 258: 10
44 Chaudhari N S, Warule S S, Dhanmane S A, et al. Nano structured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S [J]. Nanoscale, 2013, 5: 9383
45 Liu H, Yang D, Zheng Z, et al. A Raman spectroscopic and TEM study on the structural evolution of Na2Ti6O13 during the transition to Na2Ti6O13 [J]. Journal of Raman Spectroscopy, 2010, 41: 1331
46 Tauc J. Absorption edge and internal electric fields in amorphous semiconductors [J]. Materials Research Bulletin, 1970, 5: 721
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.