Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (12): 939-948    DOI: 10.11901/1005.3093.2020.206
  研究论文 本期目录 | 过刊浏览 |
正火型V-N-TiNb-V-Ti海工钢焊接粗晶热影响组织和韧性研究
师仲然1,2(), 赵庆凯3, 刘登辉3, 王天琪1,2, 柴希阳1,2, 罗小兵1,2, 柴锋1,2
1.钢铁研究总院工程用钢研究所 北京 100081
2.国家新材料生产应用示范平台(先进海工与高技术船舶材料) 洛阳 471000
3.中海石油(中国)有限公司天津分公司 天津 300452
Study on Microstructure and Toughness of Simulated Coarse Grain Heated Zone in Normalized V-N-Ti and Nb-V-Ti Marine Steel
SHI Zhongran1,2(), ZHAO Qingkai3, LIU Denghui3, WANG Tianqi1,2, CHAI Xiyang1,2, LUO Xiaobing1,2, CHAI Feng1,2
1.Department of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2.National New Material Production and Application Demonstration Platform (Advanced Marine Engineering and High-tech Ship Materials), Luoyang 471000, China
3.Cnooc China Limited Tianjing Branch, Tianjin 300452, China
引用本文:

师仲然, 赵庆凯, 刘登辉, 王天琪, 柴希阳, 罗小兵, 柴锋. 正火型V-N-TiNb-V-Ti海工钢焊接粗晶热影响组织和韧性研究[J]. 材料研究学报, 2020, 34(12): 939-948.
Zhongran SHI, Qingkai ZHAO, Denghui LIU, Tianqi WANG, Xiyang CHAI, Xiaobing LUO, Feng CHAI. Study on Microstructure and Toughness of Simulated Coarse Grain Heated Zone in Normalized V-N-Ti and Nb-V-Ti Marine Steel[J]. Chinese Journal of Materials Research, 2020, 34(12): 939-948.

全文: PDF(7415 KB)   HTML
摘要: 

用焊接热模拟方法研究了V-N-Ti和Nb-V-Ti微合金化正火型海工钢模拟粗晶热影响区(CGHAZ)组织和韧性的变化规律。结果表明,组织的不同使V-N-Ti设计正火型海工钢的模拟CGHAZ韧性比Nb-V-Ti钢的好。对于V-N-Ti钢,较高的N含量提高了富Ti(Ti, V)(C, N)粒子析出温度和铁素体形核能力,使模拟CGHAZ原始奥氏体晶粒和(取向差角为15°)晶粒细化,并生成能阻止或使解理裂纹的偏转细小多边形铁素体,因此具有良好的低温韧性。而Nb-V-Ti钢模拟CGHAZ原奥氏体晶界上的链状M-A、粗大的原始奥氏体晶粒和有效晶粒尺寸,是模拟CGHAZ韧性差的原因。

关键词 金属材料V-N-Ti钢正火型粗晶热影响区多边形铁素体    
Abstract

The microstructure and toughness of the simulated coarse grain heat affected zone (CGHAZ) of the normalized microalloying offshore steels V-N-Ti and Nb-V-Ti were investigated by means of a welding thermal simulator. The results show that the perculiar microstructure led to better CGHAZ toughness for the V-N-Ti steel. For V-N-Ti steel, the high N content increases the precipitation temperature of Ti-rich (Ti, V)(C, N) particles and the ferrite nucleation ability, so that refines the original austenite grain and decreases the effective grain size with high boundary tolerance angle 15o, hence, the fine polygonal ferrite could efficiently deflect or even arrest the propagation of cleavage microcracks, so it had good low temperature CGAHZ toughness. While there exist chain-like M-A on original austenite grain boundaries, coarse original austenite grains and larger amount of fine grains with high boundary tolerance angle 15o that may be responsible to the lower simulated CGHAZ toughness of Nb-V-Ti steel.

Key wordsV-N-Ti steel    normalized steel    simulated CGHAZ    polygonal ferrite
收稿日期: 2020-05-30     
ZTFLH:  TG406  
基金资助:山东省自然科学基金(ZR201911170022)
作者简介: 师仲然,男,1986年生,博士
SteelsCSiMnPSAlsTiVNbNCeqPcm
Nb-V-Ti0.160.161.600.0120.0030.030.0080.02~0.10.02~0.040.0040.440.25
V-N-Ti0.150.281.550.0090.0010.040.0110.02~0.1-0.004~0.0150.420.24
表1  实验用钢的化学成分
图1  多层多道焊焊接热影响区组成的示意图
图2  焊接接头坡口的示意图
No.Interpass temperature/℃Current/AVoltage/V

Travel speed

/cm·min-1

Heatinput

/kJ·cm-1

1Room temperatureFront arc: 750Front arc: 353052.5105
Rear arc: 680Rear arc: 3652.5
2135Front arc: 750Front arc: 343051102
Rear arc: 675Rear arc: 3651
3147Front arc: 750Front arc: 343051100
Rear arc: 680Rear arc: 3649
4155Front arc: 750Front arc: 34305199
Rear arc: 680Rear arc: 3548
5161Front arc: 750Front arc: 34305199
Rear arc: 680Rear arc: 3548
6157Front arc: 750Front arc: 343051102
Rear arc: 670Rear arc: 3851
7163Front arc: 750Front arc: 343051103
Rear arc: 660Rear arc: 3852
8169Front arc: 750Front arc: 34305199
Rear arc: 650Rear arc: 3748
9158Front arc: 750Front arc: 343051102
Rear arc: 670Rear arc: 3851
表2  双丝埋弧焊的焊接工艺参数
图3  焊接接头和焊接粗晶区的冲击功
图4  实验用钢模拟焊接粗晶区的显微组织
图5  实验用钢模拟焊接粗晶区M-A的TEM照片
图6  模拟粗晶热影响区原始奥氏体晶粒的形貌
图7  模拟粗晶热影响区的晶粒取向和取向差角分布
图 8  模拟粗晶热影响区析出粒子的TEM照片和尺寸统计
图9  实验用钢模拟粗晶热影响区在-60℃的冲击断口形貌
图10  实验用钢模拟粗晶热影响区的二次裂纹
图11  实验用钢析出第二相粒子质量百分数的热力学计算
图12  实验用钢模拟粗晶热影响区由大于15°晶界形成的有效晶粒尺寸
SsteelsM-A/%Stripy M-A/%Massive M-A/%The size of Stripy M-A/μmThe size of massive M-A/μm
V-N-Ti3.891.452.444.510.78
Nb-V-Ti4.311.442.874.020.42
表3  实验用钢模拟粗晶热影响区M-A岛的统计结果
图13  V-N-Ti钢模拟粗晶热影响区的原始奥氏体晶界多边形铁素体组织
1 Yang C F, Su H. Research and development of high performance shipbuilding and marine engineering steel [J]. Iron and steel, 2012, 47(12): 1
1 杨才福, 苏航. 高性能船舶及海洋工程用钢的开发 [J]. 钢铁, 2012, 47(12): 1
2 Zhao J. Progress on high quality ship steel and marine engineering steel in China [J]. Mater. Rev., 2018, 32(S1): 428
2 赵捷. 我国高品质船舶、海洋工程用钢研究进展 [J]. 材料导报, 2018, 32(S1): 428
3 Du W, Li H L. Status and development trends of offshore platform steels Ⅰ [J]. Pet. Instrum., 2016, 2(3): 5
3 杜伟, 李鹤林. 海洋石油平台用钢的现状与发展趋势(一) [J]. 石油管材与仪器, 2016, 2(3): 5
4 Tian L, Min X J, Wen Z G. Comparative analysis of TMCP steel/normalizing and performance of offshore platform with large wall thickness [J]. Shipbuilding China, 2015, 56(2): 266
4 田磊, 闵祥军, 温志刚. 海洋平台大壁厚TMCP钢/正火及性能对比分析 [J]. 中国造船, 2015, 56(2): 266
5 Ma G T, Tang H S, Wang Y X, et al. Development of 130 mm Q345EZ35 ultra heavy plates for wind towers [J]. Shandong Metall., 2012, 34(2): 13
5 马光亭, 汤化胜, 王月香等. 130mm Q345EZ35风电塔简用特厚钢板的研制开发 [J]. 山东冶金, 2012, 34(2): 13
6 Chai F, Shi Z R, Yang C F, et al. Effect of nitrogen on microstructure and mechanical properties for simulated CGHAZ of normalized vanadium micro-alloyed steel [J]. Chin. J. Mater. Res., 2019, 33: 848
6 柴锋, 师仲然, 杨才福等. 氮对钒微合金钢粗晶热影响区(CGHAZ)的组织和性能的影响 [J]. 材料研究学报, 2019, 33: 848
7 Lu F, Chai F, Cheng G P, et al. Study on continuous cooling transformation behavior of coarse grain Heat-Affected zone in V-N-Ti and Nb-V-Ti microalloyed offshore platform steels [A].HSLA Steels 2015, Microalloying2015 & Offshore Engineering Steels 2015: Conference Proceedings [C]. Cham: Springer, 2016: 525
8 Hu J, Du L X, Xie H, et al. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel [J]. Mater. Sci. Eng., 2014, 607A: 122
9 Hu J, Du L X, Wang J J, et al. Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V-N high strength steel [J]. Mater. Sci. Eng., 2013, 577A: 161
10 Hu J, Du L X, Wang J J. Effect of V on intragranular ferrite nucleation of high Ti bearing steel [J]. Scr. Mater., 2013, 68: 953
11 Shi Z R, Yang C F, Wang R Z, et al. Effect of nitrogen on the microstructures and mechanical properties in simulated CGHAZ of vanadium microalloyed steel varied with different heat inputs [J]. Mater. Sci. Eng., 2016, 649A: 270
12 Iza-Mendia A, Gutiérrez I. Generalization of the existing relations between microstructure and yield stress from ferrite–pearlite to high strength steels [J]. Mater. Sci. Eng., 2013, 561A: 40
13 Guo A M, Misra R D K, Liu J B, et al. An analysis of the microstructure of the heat-affected zone of an ultra-low carbon and niobium-bearing acicular ferrite steel using EBSD and its relationship to mechanical properties [J]. Mater. Sci. Eng., 2010, 527A: 6440
14 Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
15 Fang F, Yong Q L, Yang C F, et al. Microstructure and precipitation behavior in HAZ of V and Ti microalloyed steel [J]. J. Iron Steel Res. Int., 2009, 16: 68
16 Xu W W, Wang Q F, Pan T, et al. Effect of welding heat input on simulated HAZ microstructure and toughness of a-VN microalloyed steel [J]. J. Iron Steel Res. Int., 2007, 14: 234
17 Strid J, Easterling K E. On the chemistry and stability of complex carbides and nitrides in microalloyed steels [J]. Acta Metall., 1985, 33: 2057
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.