Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 784-792    DOI: 10.11901/1005.3093.2020.072
  研究论文 本期目录 | 过刊浏览 |
MgAl2O4:Mg荧光粉的合成及其发光性能
刘欣怡1, 王仕发1,2,3(), 余先伦1, 唐盛楠1, 房雷鸣3, 雷力4
1.重庆三峡学院电子与信息工程学院 万州 404000
2.重庆三峡学院 三峡库区地质环境监测与灾害预警重点实验室 万州 404000
3.中国工程物理研究院核物理与化学研究所 绵阳 621900
4.四川大学 原子和分子物理研究所 成都 610065
Fabrication and Photoluminescence Properties of MgAl2O4: Mg Phosphors
LIU Xinyi1, WANG Shifa1,2,3(), YU Xianlun1, TANG Shengnan1, FANG Leiming3, LEI Li4
1. School of Electronic and Information Engineering, Chongqing Three Gorges University, Wanzhou 404000, China
2. Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges;Reservoir Area, Chongqing Three Gorges University, Wanzhou 404000, China
3. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
4. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
引用本文:

刘欣怡, 王仕发, 余先伦, 唐盛楠, 房雷鸣, 雷力. MgAl2O4:Mg荧光粉的合成及其发光性能[J]. 材料研究学报, 2020, 34(10): 784-792.
Xinyi LIU, Shifa WANG, Xianlun YU, Shengnan TANG, Leiming FANG, Li LEI. Fabrication and Photoluminescence Properties of MgAl2O4: Mg Phosphors[J]. Chinese Journal of Materials Research, 2020, 34(10): 784-792.

全文: PDF(4131 KB)   HTML
摘要: 

用超声辅助聚丙烯酰胺凝胶法合成了MgAl2O4:Mg荧光粉。在MgAl2O4体系中引入的Mg金属颗粒抑制了MgAl2O4相的形成,在900℃及以上的温度烧结MgAl2O4:Mg干凝胶粉末,镁颗粒氧化成MgO。Mg金属颗粒的引入使MgAl2O4:Mg荧光粉的形貌由细小的纳米颗粒变为方便面型;MgAl2O4:Mg荧光粉的颜色由在600℃烧结时的暗棕色变为在800℃烧结时的白色,在1000℃烧结时白色变暗。随着烧结温度的提高MgAl2O4:Mg荧光粉的能带先增大后略微减小。引入镁颗粒使荧光光谱中位于395和425 nm的两个荧光峰淬灭,在650、656和680 nm出现三个新的荧光发射峰,且随着烧结温度的提高发光强度减弱。金属颗粒的表面等离子体共振导致MgAl2O4主晶格荧光淬灭,缺陷能级使MgAl2O4:Mg荧光粉产生了新的荧光发射峰。

关键词 复合材料铝酸镁聚丙烯酰胺凝胶法荧光表面等离子体共振    
Abstract

A novel MgAl2O4:Mg phosphor was prepared by ultrasonic assisted polyacrylamide gel method. When Mg metal particles were introduced into the MgAl2O4 system, the formation of MgAl2O4 phase was inhibited. When the xerogel powder MgAl2O4:Mg was sintered at 900℃ or above, the incorporated Mg-particles are oxidized to be MgO. The introduction of Mg-particles greatly changed the morphology of MgAl2O4:Mg phosphors, namely from tiny nanoparticles to instant noodles-like. The results show that the sintering temperature has great influence on the color, light absorption capacity, energy band Eg and photoluminescence properties of MgAl2O4:Mg phosphors. The color of MgAl2O4:Mg phosphors changes from dark brown for sintering at 600℃ to bright white at 800℃ and then to light white at 1000℃. With the increase of sintering temperature the Eg value of MgAl2O4:Mg phosphors increased first and then decreased slightly. The photoluminescence spectra show that three new photoluminescence emission peaks located at 650, 656 and 680 nm are observed when the excitation wavelength is 325 nm. The photoluminescence intensity decreased with the increasing of sintering temperature. The fluorescence emission peaks at 395 and 425 nm of host lattice MgAl2O4 were quenched. The surface plasmon resonance (SPR) of Mg metal particles led to the fluorescence quenching of MgAl2O4 host lattice, and the defect energy level can produce a new fluorescence emission band at 635~690 nm of MgAl2O4:Mg phosphors.

Key wordscomposite    MgAl2O4    polyacrylamide gel method    fluorescence    surface plasmon resonance
收稿日期: 2020-03-09     
ZTFLH:  TB321  
基金资助:重庆市自然科学基金(cstc2019jcyj-msxmX0310);重庆市教委科技项目(KJQN201901);重庆市教委科技项目(KJZD-M201901201);重庆三峡学院人才引进项目(09924601);重庆三峡学院重大培育课题(18ZDPY01)
作者简介: 刘欣怡,女,1998年生,本科生
图1  MgAl2O4:Mg荧光粉的制备流程
图2  MgAl2O4:Mg干凝胶粉末在不同温度烧结后的产物和MgAl2O4的XRD图谱
图3  MgAl2O4:Mg干凝胶粉末在不同温度烧结后产物的FTIR图谱
图4  MgAl2O4:Mg干凝胶粉末在800℃烧结后产物的SEM照片
图5  MgAl2O4:Mg干凝胶粉末在不同温度烧结后产物的紫外可见漫反射光谱和紫外可见吸收光谱
SampleColor coordinatesEg /eV
L*a*b*c*HoECIE*
60055.8785.22613.08014.08568.22157.6262.090
70070.8920.34510.24910.29688.07271.6363.643
80098.318-0.4974.3074.336-83.41898.4143.803
90098.049-0.5313.0553.101-80.14098.0984.027
100097.652-0.1612.3912.396-86.14897.6813.970
表1  MgAl2O4:Mg干凝胶粉末在不同温度烧结后产物的色度参数和Eg值
图6  MgAl2O4:Mg干凝胶粉末在不同温度烧结后产物的实物照片
图7  MgAl2O4:Mg干凝胶粉末在不同温度烧结后产物的Eg值及其与烧结温度的关系
图8  MgAl2O4:Mg干凝胶粉末在800℃烧结后产物的荧光光谱
图9  MgAl2O4:Mg干凝胶粉末在800℃烧结后产物的色度
图10  荧光强度与烧结温度的关系
图11  MgAl2O4:Mg荧光粉的发光机理
[1] Han M, Wang Z S, Xu Y, et al. Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method [J]. Mater. Chem. Phys., 2018, 215: 251
doi: 10.1016/j.matchemphys.2018.05.029
[2] Laobuthee A, Wongkasemjit S, Traversa E, et al. MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors [J]. J. Eur. Ceram. Soc., 2000, 20: 91
doi: 10.1016/S0955-2219(99)00153-3
[3] Tsai D S, Wang C T, Yang S J, et al. Hot isostatic pressing of MgAl2O4 spinel infrared windows [J]. Mater. Manuf. Process., 1994, 9: 709
doi: 10.1080/10426919408934941
[4] Fu P, Lu W Z, Lei W, et al. Transparent polycrystalline MgAl2O4 ceramic fabricated by spark plasma sintering: Microwave dielectric and optical properties [J]. Ceram. Int., 2013, 39: 2481
doi: 10.1016/j.ceramint.2012.09.006
[5] Wang S F, Chen C L, Li Y W, et al. Synergistic effects of optical and photoluminescence properties, charge transfer, and photocatalytic activity in MgAl2O4: Ce and Mn-Codoped MgAl2O4: Ce phosphors [J]. J. Electron. Mater., 2019, 48: 6675
doi: 10.1007/s11664-019-07479-x
[6] Qi J Q, Lv T C, Chang X H, et al. Investigation on preparation and transparent mechanism of MgAl2O4 transparent nano-ceramics [J]. Chin. J. Mater. Res., 2006, 20: 367
[6] 齐建起, 卢铁城, 常相辉等. MgAl2O4纳米透明陶瓷的制备及其透明机理 [J]. 材料研究学报, 2006, 20: 367
[7] He J, Lin L B, Lu Y, et al. Study on optical spectra of transparent MgAl2O4 ceramics treated with γ-irradiation and annealing [J]. J. Synthet. Cryst., 2004, 31: 63
[7] 何捷, 林理彬, 卢勇等. γ辐射及退火MgAl2O4透明陶瓷光谱特性研究 [J]. 人工晶体学报, 2004, 31: 63
[8] Wang S F, Gao H J, Wei Y, et al. Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N-O and C-O functional groups decorating spinel type magnesium aluminate [J]. CrystEngComm, 2019, 21: 263
doi: 10.1039/C8CE01474D
[9] Moshtaghioun B M, Peña J I, Merino R I. Medium infrared transparency of MgO-MgAl2O4 directionally solidified eutectics [J]. J. Eur. Ceram. Soc., 2020, 40: 1703
doi: 10.1016/j.jeurceramsoc.2019.10.053
[10] Choudhary A K, Dwivedi A, Bahadur A, et al. Enhanced upconversion emission and temperature sensor sensitivity in presence of Bi3+ ions in Er3+/Yb3+ co-doped MgAl2O4 phosphor [J]. Ceram. Int., 2018, 44: 9633
doi: 10.1016/j.ceramint.2018.02.190
[11] Kumari P, Dwivedi Y. Optical analysis of interaction between Sm and Eu ions in MgAl2O4 spinel nanophosphor [J]. Optik, 2020, 203: 163977
doi: 10.1016/j.ijleo.2019.163977
[12] Ibarra A, Bravo D, Garcia M A, et al. Dose dependence of neutron irradiation effects on MgAl2O4 spinels [J]. J. Nucl. Mater., 1998, 258-263: 1902
doi: 10.1016/S0022-3115(98)00130-5
[13] Ibarra A, Vila R, Garner F A. Optical and dielectric properties of neutron irradiated MgAl2O4 spinels [J]. J. Nucl. Mater., 1996, 233-237: 1336
doi: 10.1016/S0022-3115(96)00158-4
[14] Yang Z X, Zhong W, Au C T, et al. Novel photoluminescence properties of magnetic Fe/ZnO composites: self-assembled ZnO nanospikes on Fe nanoparticles fabricated by hydrothermal method [J]. J. Phys. Chem., 2009, 113C: 21269
[15] Im J, Singh J, Soares J W, et al. Synthesis and optical properties of dithiol-linked ZnO/gold nanoparticle composites [J]. J. Phys. Chem., 2011, 115C: 10518
[16] Huan H, Jile H, Tang Y J, et al. Fabrication of ZnO@Ag@Ag3PO4 ternary heterojunction: superhydrophilic properties, antireflection and photocatalytic properties [J]. Micromachines, 2020, 11: 309
doi: 10.3390/mi11030309
[17] Wang Y P, Yang H, Sun X F, et al. Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation [J]. Mater. Res. Bull., 2020, 124: 110754
doi: 10.1016/j.materresbull.2019.110754
[18] Rahmat N, Yaakob Z, Pudukudy M, et al. Single step solid-state fusion for MgAl2O4 spinel synthesis and its influence on the structural and textural properties [J]. Powder Technol., 2018, 329: 409
doi: 10.1016/j.powtec.2018.02.007
[19] Ay A N, Zümreoglu-Karan B, Temel A, et al. Bioinorganic magnetic core-shell nanocomposites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite [J]. Inorg. Chem., 2009, 48: 8871
doi: 10.1021/ic901097a pmid: 19691269
[20] Wang S Y, Yang H, Yi Z, et al. Enhanced photocatalytic performance by hybridization of Bi2WO6 nanoparticles with honeycomb-like porous carbon skeleton [J]. J. Environ. Manag., 2019, 248: 109341
doi: 10.1016/j.jenvman.2019.109341
[21] Garza-Navarro M A, Torres-Castro A, García-Gutiérrez D I, et al. Synthesis of spinel-metal-oxide/biopolymer hybrid nanostructured materials [J]. J. Phys. Chem., 2010, 114C: 17574
[22] Huang J G, Zhuang H R, Li W L. Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion [J]. Mater. Res. Bull., 2003, 38: 149
doi: 10.1016/S0025-5408(02)00979-0
[23] Pathak N, Sanyal B, Gupta S K, et al. MgAl2O4 both as short and long persistent phosphor material: Role of antisite defect centers in determining the decay kinetics [J]. Solid State Sci., 2019, 88: 13
doi: 10.1016/j.solidstatesciences.2018.12.001
[24] Puriwat J, Chaitree W, Suriye K, et al. Elucidation of the basicity dependence of 1-butene isomerization on MgO/Mg(OH)2 catalysts [J]. Catal. Commun., 2010, 12: 80
doi: 10.1016/j.catcom.2010.08.015
[25] Kutty P M, Dasgupta S. Low temperature synthesis of nanocrystalline magnesium aluminate spinel by a soft chemical method [J]. Ceram. Int., 2013, 39: 7891
doi: 10.1016/j.ceramint.2013.03.050
[26] Nantharak W, Wattanathana W, Klysubun W, et al. Effect of local structure of Sm3+ in MgAl2O4: Sm3+ phosphors prepared by thermal decomposition of triethanolamine complexes on their luminescence property [J]. J. Alloys Compd., 2017, 701: 1019
doi: 10.1016/j.jallcom.2017.01.090
[27] Peng S M, He J L, Hu J, et al. Influence of functionalized MgO nanoparticles on electrical properties of polyethylene nanocomposites [J]. IEEE Trans. Dielect. Electr. Insulat., 2015, 22: 1512
doi: 10.1109/TDEI.2015.7116346
[28] Li L X, Xu D, Li X Q, et al. Excellent fluoride removal properties of porous hollow MgO microspheres [J]. New J. Chem., 2014, 38: 5445
doi: 10.1039/C4NJ01361A
[29] Li Z H, Yu Q J, Chen X W, et al. The role of MgO in the thermal behavior of MgO-silica fume pastes [J]. J. Therm. Anal. Calorim., 2017, 127: 1897
doi: 10.1007/s10973-016-5827-6
[30] Llamas R, Jiménez-Sanchidrián C, Ruiz J R. Environmentally friendly Baeyer-Villiger oxidation with H2O2/nitrile over Mg(OH)2 and MgO [J]. Appl. Catal., 2007, 72B: 18
[31] Yang H, Cao Z E, Shen X, et al. Fabrication of 0-3 type manganite/insulator composites and manipulation of their magnetotransport properties [J]. J. Appl. Phys., 2009, 106: 104317
doi: 10.1063/1.3262624
[32] Yang H, Cao Z E, Shen X, et al. A polymer-network gel route to oxide composite nanoparticles with core/shell structure [J]. Mater. Lett., 2009, 63: 655
doi: 10.1016/j.matlet.2008.12.013
[33] Yang X H. Irradiation synthesized and photoluminescence mechanism of MgAl2O4: Ce phosphor [J]. Inorgan. Chem. Ind., 2019, 51(9): 30
[33] 杨晓红. MgAl2O4: Ce荧光粉辐照合成及发光机理研究 [J]. 无机盐工业, 2019, 51(9): 30
[34] Gao H J, Yang H, Wang S F. Comparative study on optical and electrochemical properties of MFe2O4 (M=Mg, Ca, Ba) nanoparticles [J]. Trans. Indian Ceram. Soc., 2018, 77: 150
doi: 10.1080/0371750X.2018.1512381
[35] Ewais E M M, El-Amir A A M, Besisa D H A, et al. Synthesis of nanocrystalline MgO/MgAl2O4 spinel powders from industrial wastes [J]. J. Alloys Compd., 2017, 691: 822
doi: 10.1016/j.jallcom.2016.08.279
[36] Nassar M Y, Ahmed I S, Samir I. A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol-gel auto combustion method and their photocatalytic properties [J]. Spectrochim. Acta, 2014, 131A: 329
[37] Chen Z S, Liang X P, Fan X W, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 515
[37] 陈子尚, 梁小平, 樊小伟等. Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 515
[38] Kato T, Okada G, Optical Yanagida T., scintillation and dosimeter properties of MgO transparent ceramic and single crystal [J]. Ceram. Int., 2016, 42: 5617
doi: 10.1016/j.ceramint.2015.12.070
[39] Panin G N, Baranov A N, Oh Y J, et al. Luminescence from ZnO/MgO nanoparticle structures prepared by solution techniques [J]. Curr. Appl. Phys., 2004, 4: 647
doi: 10.1016/j.cap.2004.01.041
[40] Cui H M, Wu X F, Chen Y F, et al. Influence of copper doping on chlorine adsorption and antibacterial behavior of MgO prepared by co-precipitation method [J]. Mater. Res. Bull., 2015, 61: 511
doi: 10.1016/j.materresbull.2014.10.067
[41] Wang X, He Y, Peng G H, et al. Synthesis and luminescence properties of hollow spherical CaMoO4: Eu3+, Li+ red phosphors [J]. Chin. J. Mater. Res., 2012, 26: 615
[41] 王夏, 何燕, 彭桂花等. CaMoO4: Eu3+, Li+红色荧光粉空心球的制备和发光性能 [J]. 材料研究学报, 2012, 26: 615
[42] Li Z, Wu K Y, Wang Y F, et al. Hydrothermal preparation and photoluminescent property of SrMoO4: Pr3+ red phosphors [J]. Chin. J. Mater. Res., 2017, 31: 274
[42] 李兆, 吴坤尧, 王永锋等. SrMoO4: Pr3+红色荧光粉的水热合成及光致发光 [J]. 材料研究学报, 2017, 31: 274
[43] Yan Y X, Yang H, Yi Z, et al. Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation [J]. Solid State Sci., 2020, 100: 106102
doi: 10.1016/j.solidstatesciences.2019.106102
[44] Wu H, Jile H, Chen Z Q, et al. Fabrication of ZnO@MoS2 nanocomposite heterojunction arrays and their photoelectric properties [J]. Micromachines, 2020, 11: 189
doi: 10.3390/mi11020189
[45] Guan S T, Yang H, Sun X F, et al. Preparation and promising application of novel LaFeO3/BiOBr heterojunction photocatalysts for photocatalytic and photo-Fenton removal of dyes [J]. Opt. Mater., 2020, 100: 109644
doi: 10.1016/j.optmat.2019.109644
[46] Yi Z, Li X, Wu H, et al. Fabrication of ZnO@Ag3PO4 core-shell nanocomposite arrays as photoanodes and their photoelectric properties [J]. Nanomaterials, 2019, 9: 1254
doi: 10.3390/nano9091254
[47] Peralta M D L R, Pal U, Zeferino R S. Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis [J]. ACS Appl. Mater. Int., 2012, 4: 4807
doi: 10.1021/am301155u
[48] Xian T, Di L J, Ma J, et al. Photocatalytic degradation activity of BaTiO3 nanoparticles modified with Au in simulated sunlight [J]. Chin. J. Mater. Res., 2017, 31: 102
[48] 县涛, 邸丽景, 马俊等. Au改性BaTiO3纳米颗粒在模拟太阳光照射下的光催化降解性能 [J]. 材料研究学报, 2017, 31: 102
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.