Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (9): 665-673    DOI: 10.11901/1005.3093.2020.103
  研究论文 本期目录 | 过刊浏览 |
电子束冷床熔炼TC4钛合金的热变形行为
王伟1,2(), 宫鹏辉1, 张浩泽2,3, 史亚鸣2, 王萌1, 张晓锋2, 王快社1
1.西安建筑科技大学冶金工程学院 西安 710055
2.云南钛业股份有限公司 楚雄 651209
3.昆明理工大学材料科学与工程学院 昆明 650093
Hot Deformation Behavior of TC4 Ti-Alloy Prepared by Electron Beam Cold Hearth Melting
WANG Wei1,2(), GONG Penghui1, ZHANG Haoze2,3, SHI Yaming2, WANG Meng1, ZHANG Xiaofeng2, WANG Kuaishe1
1. School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2. Yunnan Titanium Industry Co., Ltd, Chuxiong 651209, China
3. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

王伟, 宫鹏辉, 张浩泽, 史亚鸣, 王萌, 张晓锋, 王快社. 电子束冷床熔炼TC4钛合金的热变形行为[J]. 材料研究学报, 2020, 34(9): 665-673.
Wei WANG, Penghui GONG, Haoze ZHANG, Yaming SHI, Meng WANG, Xiaofeng ZHANG, Kuaishe WANG. Hot Deformation Behavior of TC4 Ti-Alloy Prepared by Electron Beam Cold Hearth Melting[J]. Chinese Journal of Materials Research, 2020, 34(9): 665-673.

全文: PDF(12667 KB)   HTML
摘要: 

使用Gleeble-3800热模拟实验机进行一系列热模拟压缩实验,研究了电子束冷床熔炼TC4钛合金在变形温度为850℃~1100℃、应变速率为0.01 s-1~10 s-1条件下的热变形行为。根据真应力-真应变曲线分析变形参数对流变应力的影响,分别建立电子束冷床熔炼TC4钛合金在(α+β)两相区和β单相区的Arrhenius本构模型,绘制了基于动态材料模型的热加工图。结果表明:流变应力随着温度的提高和应变速率的增大而降低;(α+β)两相区的热变形激活能Q=746.334 kJ/mol,β单相区的热变形激活能Q=177.841 kJ/mol;用相关系数法和相对平均误差分析了模型的误差,相关系数R2=0.995,相对平均误差AARE=5.04%。这些结果表明,所建立的模型较为准确,可准确预测其热变形流变应力;合金的最佳加工区域为:变形温度1000~1100℃、应变速率0.01~0.1 s-1

关键词 金属材料电子束冷床熔炼TC4热变形本构模型加工图    
Abstract

The hot deformation behavior of electron beam cold hearth melting TC4 Ti-alloy at 850~1100℃, by strain rate 0.01~10 s-1 were investigated through a series of thermal simulation compression experiments via Gleeble-3800 thermal simulator. According to the true stress-true strain curve, the influence of deformation parameters on rheological stress was analyzed, and the Arrhenius constitutive model and DMM processing maps was established. The results show that the flow stress decreases with the increase of deformation temperature, and the flow stress decreases with the increase of strain rate. The hot deformation activation energy was Q=746.334 kJ/mol and Q=177.841 kJ/mol for the TC4 Ti-alloys composed of (α+β) two-phase and β phase respectively. The error analysis of the model was carried out by correlation coefficient method and relative average error. The correlation coefficient R2=0.995 and the relative average error AARE=5.04%, which indicates that the established model is accurate and can accurately predict the thermal deformation flow stress. The best processing area of the alloy is within the temperature range of 1000~1100℃ and strain rate range of 0.01~0.1 s-1.

Key wordsmetallic materials    Electron Beam Cold Hearth Melting    TC4    hot deformation    constitutive model    processing maps
收稿日期: 2020-04-07     
ZTFLH:  TG146.2  
基金资助:中国博士后基金(2019M653571)
作者简介: 王伟,男,1985年生,副教授,博士
图1  TC4钛合金原始铸锭的低倍组织和原始显微组织
图2  在不同温度和应变速率条件下的真应力真应变曲线
图3  高温压缩变形峰值应力与变形温度和应变速率的关系
图4  lnσ与lnε˙的关系和σ与lnε˙的关系
图5  ln[sinh(ασ)]与lnε˙的关系
图6  高温压缩变形峰值应力与变形温度的关系
图7  ln[sinh(ασ)]与lnZ的关系
图8  根据本构关系流变应力的预测值与实验值的相关性
图9  EB炉熔炼TC4钛合金的开坯轧制加工图
图10  不同变形条件下TC4钛合金的微观组织
图11  在950℃、10 s-1条件下变形后合金的宏观和微观照片
Q/kJ·mol-1
α+ββ
EB(This paper)746.334177.841
VAR [21]564.05300.2
VAR[22]330.86267.77
VAR4[6]677.37267.36
表1  用不同熔炼方式制备的TC4钛合金的热变形激活能
[1] Kotkunde N, Deole A D, Gupta A K, et al. Failure and formability studies in warm deep drawing of Ti-6Al-4V alloy [J]. Materials & Design, 2014, 60: 540
[2] Li X M, Liu L, Dong J, et al. Discussion on economic analysis and decreasing cost process of titanium and titanium alloys [J].Materials China, 2015, 34(05): 401
[2] (李献民, 刘立, 董洁等. 钛及钛合金材料经济性及低成本方法论述 [J].中国材料进展, 2015, 34(05): 401)
[3] Bolzoni L, Ruiz-Navas E M, Gordo E. Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys [J]. Materials & Design, 2016, 110: 317
[4] Huang Z H, Qu H L, Deng C, et al. Development and application of aerial titanium and its alloys [J]. Materials Review, 2011, 25(1): 102
[4] (黄张洪, 曲恒磊, 邓超等.航空用钛及钛合金的发展及应用 [J]. 材料导报, 2011, 25(1): 102)
[5] Feng Q Y, Tong X W, Wang J, et al. Status quo and development tendency on the research of low cost titanium alloy [J]. Materials Review, 2017, 31(09): 128
[5] (冯秋元, 佟学文, 王俭等. 低成本钛合金研究现状与发展趋势 [J]. 材料导报, 2017, 31(09): 128)
[6] Luo J, Li M Q, Li H, et al. High temperature deformation behavior of TC4 titanium alloy and its flows stress model [J]. The Chinese Journal of Nonferrous Metals, 2008(08): 1395
[6] (罗皎, 李淼泉, 李宏等. TC4钛合金高温变形行为及其流动应力模型 [J]. 中国有色金属学报, 2008(08): 31)
[7] Yang B W, Xue Y, Zhang Z M, et al. Study on high temperature deformation behavior of HIP TC4 titanium alloy [J]. Hot Working Technology, 2018, 47(23): 38
[7] (杨博文, 薛勇, 张治民等. 热等静压态TC4钛合金高温变形行为研究 [J]. 热加工工艺, 2018, 47(23): 38)
[8] Seshacharyulu T, Medeiros S C, Frazier W G, et al. Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: Materials modeling considerations [J]. Materials Science & Engineering A, 2000, 284(1-2): 184
[9] Pan Y Q, Yang Z S. Hot compressive deformation behavior of TC4 titanium alloy [J]. Rare Metal Materials and Engineering, 1993, 22(05): 45
[9] (潘雅琴, 杨昭苏. TC4钛合金热压变形行为的研究 [J]. 稀有金属材料与工程, 1993, 22(05): 45)
[10] Bai J J, Li W, Liang Y L, et al. High temperature compressive deformation behavior of TC4 titanium alloy [J]. Heat Treatment of Metals, 2017, 42(05): 121
[10] (白娇娇, 李伟, 梁益龙等. TC4钛合金的高温压缩变形行为 [J]. 金属热处理, 2017, 42(05): 121)
[11] Xu Y. Hot deformation behavior and low temperature superplasticity of rolled TC4 titanium alloy in the α+β phase field [D]. Nanchang: Nanchang University, 2018
[11] (徐勇. 轧制态TC4钛合金α+β两相区热变形行为及其低温超塑性研究 [D]. 南昌: 南昌大学, 2018)
[12] Xiaona Peng, Hongzhen Guo, Zhifeng Shi, et al. Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map [J]. Materials Science & Engineering A, 2014: 605
[13] Liu J X, Wu X D, Wan M, et al. Study on hot deformation behavior of titanium alloy by modified Arrhennius equation [J]. Materials Science and Technology, 2015, 23(03): 7
[13] (刘俊雄, 吴向东, 万敏等. 基于修正的Arrhennius方程钛合金高温本构方程研究 [J]. 材料科学与工艺, 2015, 23(03): 7)
[14] Hu M, Dong L, Zhang Z, et al. A novel computational method of processing map for Ti-6Al-4V alloy and corresponding microstructure study [J]. Materials, 2018, 11(9): 1599
doi: 10.3390/ma11091599
[15] Cai J, Li F, Liu T, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain [J]. Materials & Design, 2011, 32(3): 1144
[16] Xu Y, Yang X J, He Y, et al. Microstructure and mechanical properties of TC4 titanium alloy subjected to multi-pass warm rolled [J]. Rare Metal Materials and Engineering, 2017, 46(05): 1321
[16] (徐勇, 杨湘杰, 何毅等. 稀有金属材料与工程, 2017, 46(05): 1321)
[17] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of applied physics, 1944, 15(1): 22
doi: 10.1063/1.1707363
[18] Jia W J, Suo J G, Hou H M, et al. Hot deformation behavior of TC4 titanium alloy with high-oxygen in β phase region [J]. Titanium Industry Progress, 2018, 35(05): 8
[18] (贾蔚菊, 索军刚, 侯红苗等. 高氧TC4钛合金β相区变形行为研究 [J]. 钛工业进展, 2018, 35(05): 13)
[19] Sun Z Y, Liu J R, Li R, et al. Predicted constitutive modeling of hot deformation for AZ31 magnesium alloy [J]. Acta Metallurgica Sinica, 2011, 47(02): 191
[19] (孙朝阳, 刘金榕, 李瑞等. Incoloy 800H高温变形流动应力预测模型 [J]. 金属学报, 2011, 47(2): 853)
[20] Xu M, Jia W J, Zhang Z H, et al. Hot compression deformation behavior and processing map of TA15 alloy [J]. Rare Metal Materials and Engineering, 2017, 46(09): 2708
[20] (徐猛, 贾蔚菊, 张志豪等. TA15钛合金高温热压缩变形行为及热加工图 [J]. 稀有金属材料与工程, 2017, 46(09): 2708)
[21] Quan G, Wen H, Zou Z. Construction of processing maps based on expanded data by BP-ANN and identification of optimal deforming parameters for Ti-6Al-4V alloy [J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(2): 171
doi: 10.1007/s12541-016-0022-z
[22] Liu L J. The study on the application of the improved constituive equation for titanium alloy in high speed milling [D]. Taiyuan: Taiyuan University of Technology, 2013
[22] (刘丽娟. 钛合金Ti-6A1-4V修正本构模型在高速铣削中的应用研究 [D]. 太原: 太原理工大学, 2013)
[23] Fang G, Zou J R, Lu Y F, et al. Processing map of titanium alloy TC4 and its application for plate rolling analyses [J]. J. Tsinghua Univ (Sci & Tech), 2012, 52(07): 929
[23] (方刚, 邹建荣, 卢亚锋等. TC4钛合金加工图及其在板材轧制工艺分析中的应用 [J]. 清华大学学报(自然科学版), 2012, 52(07): 929)
[24] Yue Y W, Wen T, Liu L T, et al. Predicted processing map of TC4 titanium alloy based on BP neural network [J]. Chinese Journal of Rare Metals, 2014, 38(04): 567
[24] (岳远旺, 温彤, 刘澜涛等. 基于BP神经网络预测的TC4热加工图 [J]. 稀有金属, 2014, 38(04): 567)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.