Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (12): 915-920    DOI: 10.11901/1005.3093.2020.098
  研究论文 本期目录 | 过刊浏览 |
Fe2W型铁氧体BaFe2-x2+CoxFe163+O27(x=0.0~0.8)的微观结构和磁性
唐锦1(), 李丹2, 秦健春1, 曾纪术1, 何浩1, 李益民1, 刘晨1
1.广西科技大学 材料科学与工程研究中心 柳州 545006
2.攀枝花学院 公共实验教学中心 攀枝花 617000
Microstructure and Magnetic Properties of Fe2W-type Ferrites BaFe2-x2+CoxFe163+O27 (x=0.0~0.8)
TANG Jin1(), LI Dan2, QIN Jianchun1, ZENG Jishu1, HE Hao1, LI Yimin1, LIU Chen1
1.Research Center of Materials Science and Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
2.Center of Experimental Teaching for Common Courses, Panzhihua University, Panzhihua 617000, China
引用本文:

唐锦, 李丹, 秦健春, 曾纪术, 何浩, 李益民, 刘晨. Fe2W型铁氧体BaFe2-x2+CoxFe163+O27(x=0.0~0.8)的微观结构和磁性[J]. 材料研究学报, 2020, 34(12): 915-920.
Jin TANG, Dan LI, Jianchun QIN, Jishu ZENG, Hao HE, Yimin LI, Chen LIU. Microstructure and Magnetic Properties of Fe2W-type Ferrites BaFe2-x2+CoxFe163+O27 (x=0.0~0.8)[J]. Chinese Journal of Materials Research, 2020, 34(12): 915-920.

全文: PDF(4110 KB)   HTML
摘要: 

用固相法制备Fe2W型铁氧体BaFe2-x2+CoxFe163+O27(x=0.0~0.8),采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、红外光谱仪(FT-IR)和振动样品磁强计(PPMS-VSM)等手段分析其物相组成、结构和磁性并使用Reitveld拟合分析晶体结构,研究了Co2+部分取代Fe2+的Fe2W型铁氧体的微观结构和磁性。结果表明:所有样品都是纯相铁氧体BaFe2-x2+CoxFe163+O27。样品具有W铁氧体结构,晶粒呈良好的六角形结构且分布均匀。用 Co取代能明显提高Fe2W型铁氧体300 K的饱和磁化强度(Ms)。

关键词 无机非金属材料Fe2W型铁氧体固相法微观结构磁特性    
Abstract

Fe2W-type ferrite BaFe2-x2+CoxFe163+O27(x=0.0~0.8) was prepared by solid phase method, and of which the microstructure and magnetic properties were characterized by means of X-ray diffractometer (XRD), scanning electron microscope (SEM), infrared spectrometer (FT-IR) and vibrating sample magnetometer (PPMS-VSM), as well as Reitveld fitting method. The results show that all samples are single phase BaFe2-x2+CoxFe163+O27 without residual α-Fe2O3. The grain has a good hexagonal structure and the particle size distribution is uniform. Last but not least, the partial substitution of Co2+ forFe2+can significantly improve the saturation magnetization (Ms) at 300 K for Fe2W-type ferrite BaFe2-x2+CoxFe163+O27.

Key wordsinorganic non-metallic materials    Fe2W type ferrite    solid phase method    microstructure    magnetic properties
收稿日期: 2020-04-02     
ZTFLH:  TB321  
基金资助:国家自然科学基金(51872004);广西科技基地和人才专项(AD19245013);广西科技大学博士基金(19Z29)
作者简介: 唐锦,男,1981年生,博士生
Co/xChemical formulaFe2O3BaCO3Co2O3
0.0BaFe2+2Fe3+16O2791.28012.530-
0.2BaCo0.2Fe1.82+Fe163+O2790.23312.5251.053
0.4BaCo0.4Fe1.62+Fe163+O2789.18512.5202.105
0.6BaCo0.6Fe1.42+Fe163+O2788.13712.5163.156
0.8BaCo0.8Fe1.22+Fe163+O2787.09012.5104.207
表1  制备BaCoxFe2-x2+Fe163+O27样品所需试剂的质量
图1  六方铁氧体BaCoxFe2-x2+Fe163+O27 (x=0.0, 0.2, 0.4, 0.6, 0.8)磁粉的X射线衍射图
图2  BaCoxFe2-x2+Fe163+O27 (x=0.0, 0.2, 0.6, 0.8)样品的XRD 精修谱
图3  BaCoxFe2-x2+Fe163+O27(x=0.6)磁体样品的SEM照片
Co/xc/nma=b/nmc/adX-ray/g·cm-3Vcell/nm3
0.03.285460.589245.57585.29330.98789
0.23.273630.587095.57605.37230.97717
0.43.283330.588165.58245.33690.98365
0.63.289570.590025.57545.29340.99175
0.83.299420.591165.58135.25720.99857
表2  BaCoxFe2-x2+Fe163+O27 (x=0.0, 0.2, 0.4, 0.6, 0.8)样品的结构参数
图4  BaCoxFe2-x2+Fe163+O27(x=0.0~0.8)的FT-IR光谱
图5  W型铁氧体BaCoxFe2-x2+Fe163+O27(x=0.0~0.8)的典型磁滞回线
Co (x)T=300 KT=3 K
Ms /emu·g-1Hc /OeMs /emu·g-1Hc /Oe
0.079.42550112.07700
0.280.29500100.26790
0.487.5748091.89760
0.680.88375101.54690
0.879.59250104.27770
表3  钴取代Fe2W型铁氧体BaCoxFe2-x2+Fe163+O27(x=0.0~0.8)在3 K和300 K的Ms和Hc
图6  矫顽力Hc饱和磁化强度Ms在3 K和300 K时随Co取代量x的变化
1 Pullar R C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics [J]. Progr. Mater. Sci., 2012, 57: 1191
2 Slimani Y, Baykal A, Manikandan A. Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles [J]. J. Magn. Magn. Mater., 2018, 458: 204
3 Ahmad M, Ali I, Grössinger R, et al. Effects of divalent ions substitution on the microstructure, magnetic and electromagnetic parameters of Co2W hexagonal ferrites synthesized by sol-gel method [J]. J. Alloys Compd., 2013, 579: 57
4 Hemeda D M, Al-Sharif A, Hemeda O M. Effect of Co substitution on the structural and magnetic properties of Zn-W hexaferrite [J]. J. Magn. Magn. Mater., 2007, 315: L1
5 Lv F R, Liu X S, Feng S J, et al. Microstructure and magnetic properties of W-type hexagonal ferrites Ba1-xSrxFe2+2Fe3+16O27 [J]. Mater. Lett., 2015, 157: 277
6 You J H, Yoo S I. Improved magnetic properties of Zn-substituted strontium W-type hexaferrites [J]. J. Alloys Compd., 2018, 763: 459
7 Tang J, Liu X S, Li D, et al. Structure and magnetic analyses of hexaferrite Sr1-xLaxFe22+Fe163+O27 prepared via the solid-state reaction [J]. J. Mater. Sci. Mater. Electron., 2019, 30: 284
8 Singh J, Singh C, Kaur D, et al. Elucidation of phase evolution, microstructural, Mössbauer and magnetic properties of Co2+-Al3+ doped M-type Ba-Sr hexaferrites synthesized by a ceramic method [J]. J. Alloys Compd., 2017, 695: 1112
9 Iqbal M J, Khan R A. Enhancement of electrical and dielectric properties of Cr doped BaZn2 W-type hexaferrite for potential applications in high frequency devices [J]. J. Alloys Compd., 2009, 478: 847
10 Rathod V, Anupama A V, Kumar R V, et al. Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites [J]. Vib. Spectr., 2017, 92: 267
11 Rostami M, Moradi M, Alam R S, et al. Characterization of magnetic and microwave absorption properties of multi-walled carbon nanotubes/Mn-Cu-Zr substituted strontium hexaferrite nanocomposites [J]. Mater. Res. Bull., 2016, 83: 379
12 El-Sayed S M, Meaz T M, Amer M A, et al. Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite [J]. Physica, 2013, 426B: 137
13 Tang J. Study on preparation, doping, morphology, structure and magnetic properties of magnetoplumbite Fe2W ferrites [D]. Hefei: Anhui University, 2019
13 唐锦. 磁铅石型Fe2W铁氧体的制备、掺杂、形貌、结构及磁性研究 [D]. 合肥: 安徽大学, 2019
14 Lechevallier L, Le Breton J M, Teillet J, et al. Mössbauer investigation of Sr1-xLaxFe12-yCoyO19 ferrites [J]. Physica, 2003, 327B: 135
15 Bierlich S, Reimann T, Bartsch H, et al. Co/Ti-substituted M-type hexagonal ferrites for high-frequency multilayer inductors [J]. J. Magn. Magn. Mater., 2015, 384: 1
16 Albanese G, Carbucicchio M, Asti G. Spin-order and magnetic properties of BaZn2Fe16O27(Zn2-W) hexagonal ferrite [J]. Appl. Phys., 1976, 11: 81
17 Stergiou C A, Litsardakis G. Electromagnetic properties of Ni and La doped strontium hexaferrites in the microwave region [J]. J. Alloys Compd., 2011, 509: 6609
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.