Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (12): 905-914    DOI: 10.11901/1005.3093.2020.443
  研究论文 本期目录 | 过刊浏览 |
脱合金制备纳米多孔Co及其超级电容器和对偶氮染料的降解性能
陈峰, 周洋, 陈彦南, 林宗领, 秦凤香()
南京理工大学材料科学与工程学院 南京 210094
Fabrication of Nano-porous Co by Dealloying for Supercapacitor and Azo-dye Degradation
CHEN Feng, ZHOU Yang, CHEN Yannan, LIN Zongling, QIN Fengxiang()
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
引用本文:

陈峰, 周洋, 陈彦南, 林宗领, 秦凤香. 脱合金制备纳米多孔Co及其超级电容器和对偶氮染料的降解性能[J]. 材料研究学报, 2020, 34(12): 905-914.
Feng CHEN, Yang ZHOU, Yannan CHEN, Zongling LIN, Fengxiang QIN. Fabrication of Nano-porous Co by Dealloying for Supercapacitor and Azo-dye Degradation[J]. Chinese Journal of Materials Research, 2020, 34(12): 905-914.

全文: PDF(7049 KB)   HTML
摘要: 

在0.5%(质量分数,下同)NH4F和1 mol/L (NH4)2SO4混合溶液中进行电化学脱合金Zr56Al16Co28非晶合金,制备出纳米多孔Co。这种纳米多孔Co具有良好的超级电容器性能,其比电容在2 A/g的电流密度下能达318 F/g;同时,纳米多孔Co在方波电位下对直接蓝6和酸性橙II等偶氮染料具有优异的降解能力,降解效率均高于96%,其单位质量纳米多孔Co电极材料的降解能力是等质量Zr56Al16Co28非晶合金的3.5倍。

关键词 金属材料纳米多孔钴脱合金超级电容器降解    
Abstract

Nano-porous Co was prepared by electrochemically dealloying of Zr56Al16Co28 amorphous alloy in 0.5%(mass fraction) NH4F and 1 mol/L (NH4)2SO4 mixed solution. Nano-porous Co has the bicontinuous porous structure with large specific surface area and fast charge transfer ability. The prepared nano-porous Co exhibits good performance in many aspects: firstly, it delivers a high specific capacitance of 318 F/g at 2 A/g, suggesting its good performance as supercapacitor electrode; secondly, it exhibits degradation efficiencies under square wave potential as high as 96% for Direct Blue 6 and Acid Orange II respectively. The degradation ability of nano-porous Co electrode per unit mass is 3.5 times higher than that of Zr56Al16Co28 amorphous alloy electrode.

Key wordsmetallic materials    nanoporous Co    dealloying    supercapacitor    degradation
收稿日期: 2020-10-23     
ZTFLH:  TG430.40  
基金资助:国家自然科学基金(51671106);江苏省自然科学基金(BK20171424)
作者简介: 陈峰,男,1994年生,博士生
图1  Zr56Al16Co28合金的XRD谱图和在0.5% NH4F+1 mol/L (NH4)2SO4混合溶液中的极化曲线
图2  Zr56Al16Co28非晶合金脱合金后的形貌SEM图、孔径分布图和相应的EDS谱图
图3  纳米多孔Co的TEM图和选区电子衍射
图4  纳米多孔Co的Zr 3d、Al 2p、Co 2p和O 1s的XPS谱图
图5  纳米多孔Co的CV曲线、GCD曲线、比电容值和电化学阻抗谱图,插图为高频区
图6  经纳米多孔Co在不同方波电位下催化降解后在DB6和AOII溶液中的紫外吸收光谱和降解效率
图7  经纳米多孔Co不同周期催化降解后DB6和AOII溶液的紫外吸收光谱及对应的降解效率
图8  纳米多孔Co和Zr56Al16Co28非晶合金分别在DB6和AOII溶液中的方波电位图以及DB6和AOII的褪色效果
图9  纳米多孔Co、Zr56Al16Co28非晶合金催化降解DB6和AOII的紫外吸收光谱
图10  DB6和AOII溶液中降解产物的Zr 3d、Al 2p、 Co 2p、Na 1s、S 2p和O 1s的XPS谱
ElectrodeηDB6 /%Df-DB6ηAOII /%Df-AOII
NP Co97.140.142996.920.1425
Zr56Al16Co2897.910.041296.780.0403
表1  纳米多孔Co与Zr56Al16Co28非晶合金电极降解DB6和AOII溶液的降解效率及降解因子
1 Moitra D, Anand C, Ghosh B, et al. One-dimensional BiFeO3 nanowire-reduced graphene oxide nanocomposite as excellent supercapacitor electrode material [J]. ACS Appl. Energ. Mater., 2018, 1(2): 464
2 Yang T, Zhang W, Li L, et al. In-situ synthesized ZnFe2O4 firmly anchored to the surface of MWCNTs as a long-life anode material with high lithium storage performance [J]. Appl. Surf. Sci., 2017, 425: 978
3 Venkateswarlu P, Umeshbabu E, Kumar U N, et al. Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance supercapacitor applications [J]. J. Colloid Interf. Sci., 2017, 503: 17
4 Zheng X, Ye Y, Yang Q, et al. Hierarchical structures composed of MnCo2O4@MnO2 core-shell nanowire arrays with enhanced supercapacitor properties [J]. Dalton Trans., 2016, 45: 572
5 Robinson T, Mcmullan G, Marchant R, et al. Remediation of dyes in textile effuent: a critical review on current treatment technologies with a proposed alternative [J]. Bioresour. Technol., 2001, 77 (3): 247
6 Stolz A. Basic and applied aspects in the microbial degradation of azo dyes [J]. Appl. Microbiol. Biot., 2001, 56(1-2): 69
7 Oh S W, Kang M N, Cho C W, et al. Detection of carcinogenic amines from dyestuffs or dyed substrates [J]. Dyes Pigm., 1997, 33(2): 119
8 Bonin P M L, Bejan D, Schutt L, et al. Electrochemical reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine in aqueous solutions [J]. Environ. Sci. Technol., 2004, 38(5): 1595
9 Valero D, Ortiz J M, Exposito E, et al. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater [J]. Environ. Sci. Technol., 2010, 44(13): 5182
10 Ciríaco L, Anjo C, Correia J, et al. Electrochemical degradation of Ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes [J]. Electrochim. Acta, 2009, 54(5): 1464
11 Martínez-Huitle C A, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review [J]. Appl. Catal. B Environ., 2009, 87(3-4): 105
12 Sala M, Gutierrez-Bouzan M C. Electrochemical techniques in textile processes and wastewater treatment [J]. Int. J. Photoenergy, 2012, 2012: 629103
13 Sirés I, Cabot P L, Centellas F. Electrochemical degradation of clofibric acid in water by anodic oxidation: Comparative study with platinum and boron-doped diamond electrodes [J]. Electrochim. Acta, 2006, 52(1): 75
14 Carter K E, Farrell J. Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes [J]. Environ. Sci. Technol., 2015, 42(16): 6111
15 Chaplin B P, Schrader G, Farrell J. Electrochemical oxidation of nnitrosodimethylamine with boron-doped diamond film electrodes [J]. Environ. Sci. Technol., 2009, 43(21): 8302
16 Zhao Y, Chu J, Li S H, et al. Preparation of Pt-Fe2O3 nano-electrode array on goldnano-wires and its application to the catalytic degradation of methyl orange [J]. Chem. Eng. J., 2011, 170(2-3): 440
17 Sha Y Y, Mathew I, Cui Q Z, et al. Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles [J]. Chemosphere, 2016, 144: 1530
18 Wang J Q, Liu Y H, Chen M W, et al. Rapid degradation of azo dye by Fe-based metallic glass powder [J]. Adv. Funct. Mater., 2012, 22(12): 2567
19 Ding Y, Chen M W. Nanoporous metals for catalytic and optical applications [J]. MRS Bull., 2009, 34(8): 569
20 Wang X G, Wang W M, Qi Z, et al. Fabrication, microstructure and electrocatalytic property of novel nanoporous palladium composites [J]. J. Alloys Compd., 2010, 508(2): 463
21 Lang X Y, Yuan H T, Iwasa Y, et al. Three-dimensional nanoporous gold for electrochemical supercapacitors [J]. 2011, Scripta Mater., 2011, 64: 923
22 Hakamada M, Mabuchi M. Preparation of nanoporous palladium by dealloying: Anodic polarization behaviors of Pd-M (M=Fe, Co, Ni) alloys [J]. Mater. Trans., 2009, 50(3): 431
23 Zeng Y Q, Yang S C, Xiang H, Chen L Y, Chen MW, Inoue A, Zhang X H, Jiang J Q. Multicomponent nanoporous metals prepared by dealloying PdNiP metallic glasses [J]. Intermetallics, 2015, 61: 66
24 Dan Z H, Qin F X, Makino A, et al. Fabrication of nanoporous copper by dealloying of amorphous Ti-Cu-Ag alloys [J]. J. Alloys Compd., 2014, 586: S134
25 Xu W, Zhu S L, Liang Y Q, et al. Synthesis of rutile -brookite TiO2 by dealloying Ti-Cu amorphous alloy [J]. Mater. Res. Bull., 2016,73: 290
26 Wang Y, Yin Z L, Wang Z X, et al. Facile construction of Co(OH)2@Ni(OH)2 core-shell nanosheets on nickel foam as three dimensional free-standing electrode for supercapacitors [J]. Electrochim. Acta, 2019, 293: 40
27 Weng N, Wang F, Qin F X, et al. Enhanced azo-dyes degradation performance of Fe-Si-B-P nanoporous architecture [J]. Materials, 2017, 10(9): 1001
28 Stylidi M, Kondarides D I, Verykios X E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions [J]. Appl. Catal. B-Environ., 2003, 40(4): 271
29 Li S H, Zhao Y, Chu Y, et al. Electrochemical degradation of methyl orange on Pt-Bi/C nanostructured electrode by a square-wave potential method [J]. Electrochim. Acta, 2013, 92: 93
30 Wang F, Wang H, Zhang H F, et al. Superior azo-dye degradation of Fe-Si-B-P amorphous powders with graphene oxide addition [J]. J. Non-Cryst. Solids, 2018, 491: 34
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.