Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 605-610    DOI: 10.11901/1005.3093.2020.063
  研究论文 本期目录 | 过刊浏览 |
添加稀土DyCu50Zr46Al4合金的非晶形成能力和力学性能的影响
李冬梅1, 谭力铭1, 赵晴1, 谢晗晞1, 余鹏1(), 夏雷2
1 重庆师范大学物理与电子工程学院 光电功能材料重庆市重点实验室 重庆 401331
2 上海大学材料研究所 上海大学微结构重点实验室 上海 200072
Effect of Dy Addition on Glass-forming Ability and Mechanical Properties of Cu50Zr46Al4 Bulk Metallic Alloy
LI Dongmei1, TAN Liming1, ZHAO Qing1, XIE Hanxi1, YU Peng1(), XIA Lei2
1 College of Physics and Electronic Engineering Chongqing Normal University, Chongqing Key Laboratory of Photo-Electric Functional Materials, Chongqing 401331, China
2 Laboratory for Microstructure & Institute of Materials, Shanghai University, Shanghai 200072, China
引用本文:

李冬梅, 谭力铭, 赵晴, 谢晗晞, 余鹏, 夏雷. 添加稀土DyCu50Zr46Al4合金的非晶形成能力和力学性能的影响[J]. 材料研究学报, 2020, 34(8): 605-610.
Dongmei LI, Liming TAN, Qing ZHAO, Hanxi XIE, Peng YU, Lei XIA. Effect of Dy Addition on Glass-forming Ability and Mechanical Properties of Cu50Zr46Al4 Bulk Metallic Alloy[J]. Chinese Journal of Materials Research, 2020, 34(8): 605-610.

全文: PDF(3891 KB)   HTML
摘要: 

使用铜模吸铸法制备Cu50-xZr46Al4Dyx(x=0~4)系列合金,研究了Dy对其非晶形成能力和力学性能的影响。结果表明,添加1%~2%(原子分数)的Dy能明显提高Cu50-xZr46Al4Dyx合金的热稳定性和非晶形成能力。添加适量的Dy能提高体系的强度和塑性变形能力。还讨论了添加Dy元素影响Cu50-xZr46Al4Dyx体系非晶形成能力和力学性能的机理。

关键词 金属材料镝添加微合金化非晶形成能力力学性能    
Abstract

A series of Cu50-xZr46Al4Dyx(x=0~4) alloys is prepared by copper mold casting based on Cu50Zr46Al4 bulk metallic glass (BMG). The effect of Dy addition on the glass forming ability and mechanical properties of Cu50-xZr46Al4Dyx alloy was investigated through thermodynamics and mechanical experiments. It is found that 1%~2% (atomic fraction) Dy addition can significantly improve the thermal stability of Cu50-xZr46Al4Dyx, and the glass forming ability of the alloy. The strength and plastic deformation ability of the alloy can be improved effectively by proper Dy addition. The influence of Dy addition on the glass forming ability and mechanical properties of Cu50-xZr46Al4Dyx is also discussed.

Key wordsmetallic materials    Dy addition    micro-alloying    glass-forming ability    mechanical properties
收稿日期: 2020-02-27     
ZTFLH:  TB31  
基金资助:重庆市基础研究与前沿探索项目(cstc2018jcyjAX0329);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0444);重庆市教委科学技术研究重点项目(KJZD-K201900501)
作者简介: 李冬梅,女,1988年生,博士
图1  不同直径Cu50-xZr46Al4Dyx(x=0~4)试样的XRD图谱
Specimend=1.5 mmd=3.0 mmd=5.0 mm
Cu50Zr46Al4AA+C/
Cu49Zr46Al4Dy1AAA+C
Cu48Zr46Al4Dy 2AAA+C
Cu47Zr46Al4Dy 3AA+C/
Cu46Zr46Al4Dy 4A+C//
表1  不同直径Cu50-xZr46Al4Dyx(x=0,1,2,3,4)试样的结构
图2  直径为1.5 mm的Cu50-xZr46Al4Dyx(x=0,1,2,3)的合金样品升温速率为20 K/min时的DSC和DTA曲线
SpecimenTg/KTx/KTm/KTx/Kγ
Cu50Zr46Al4698.5753.7995.655.20.445
Cu49Zr46Al4Dy1693.4755.6988.562.20.449
Cu48Zr46Al4Dy2685.3753.5993.468.20.449
Cu47Zr46Al4Dy3683.1747.1996.664.00.445
表2  直径为1.5 mm的Cu50-xZr46Al4Dyx(x=0~4)BMG样品的热学参数
图3  1.5 mm直径Cu50-xZr46Al4Dyx(x=0~4)BMG试样的室温压缩应力-应变曲线
Specimensσy / GPaσmax / GPaεy / %εf / %
Cu50Zr46Al41.3751.5382.210.49
Cu49Zr46Al4Dy11.6222.0622.117.62
Cu48Zr46Al4Dy21.5121.8662.144.52
Cu47Zr46Al4Dy31.3161.9212.246.36
Cu46Zr46Al4Dy41.2931.4012.151.29
表3  直径为1.5 mm的Cu50-xZr46Al4Dyx(x=0~4)BMG的室温压缩力学参数
图4  直径1.5 mm的Cu50-xZr46Al4Dyx(x=0~4)BMG的压缩断裂形貌
图5  直径为1.5 mm和3 mm的Cu50-xZr46Al4Dyx(x=0~4)BMG试样的维氏硬度随Dy含量的变化
[1] Xu D, Lohwongwatana B, Duan G, et al. Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass [J]. Acta Mater., 2004, 52(9): 2621
[2] Das J, Tang M B, Kim K B, et al. “Work-Hardenable” ductile bulk metallic glass [J]. Phys. Rev. Lett., 2005, 94(20): 205501
doi: 10.1103/PhysRevLett.94.205501 pmid: 16090260
[3] Yu P, Bai H Y, Tang M B, et al. CuZr-base bulk metallic glasses with good glass-forming ability prepared by Al addition [J]. Acta Phys. Sin., 2005, 54(07): 3284
[3] (余鹏, 白海洋, 汤美波等.具有优良玻璃形成能力添加Al的CuZr基大块金属玻璃 [J]. 物理学报, 2005, 54(07): 3284)
[4] Das J, Kim K B, Xu W, et al. Ductile metallic glasses in supercooled martensitic alloys [J]. Mater. Trans., 2006, 47(10): 2606
[5] Kim T H, Lee S R, Bae K H, et al. Effects of Al/Cu co-doping on crystal structure and chemical composition of Nd-rich phases in Nd-Fe-B sintered magnet [J]. Acta Mater., 2017, 133: 200
[6] Zhou K, Liu Y, Pang S, et al. Formation and properties of centimeter-size Zr-Ti-Cu-Al-Y bulk metallic glasses as potential biomaterials [J]. J. Alloys Compd., 2016, 656: 389
[7] Chen W R, Wang Y M, Qiang J B. The electron concentration-constant and atomic size-constant criterion in Zr-based bulk metallic glasses [J]. Chin. J. Mater. Res., 2002, 16(2): 219
[7] (陈伟荣, 王英敏, 羌建兵等. Zr基大块非晶合金成分的等电子浓度和等原子尺寸判据 [J].材料研究学报, 2002, 16(2): 219)
[8] Liu H B, Wang C S, Gao Y L, et al. Laser cladding amorphous composite coating of Cu-Zr-Al on magnesium alloy surface [J]. Chinese J. Lasers, 2006, 33(5): 709
[8] (刘红宾, 王存山, 高亚丽等. 镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层 [J].中国激光, 2006, 33(5): 709)
[9] Zhang Q, Zhang W, Inoue A. New Cu-Zr-based bulk metallic glasses with large diameters of up to 1.5 cm [J]. Scr. Mater., 2006, 55(08): 711
[10] Zhang W, Zhang Q, Inoue A. Synthesis and mechanical properties of new Cu-Zr-based glassy alloys with high glass-forming ability [J]. Adv. Eng. Mater., 2008, 10(11): 1034
[11] Zhang Q, Zhang W, Inoue A. Fabrication of new Cu34Pd2Zr48Ag8Al8 bulk glassy alloy with a diameter of 30 mm [J]. Mater. Trans., 2007, 48(11): 3031
[12] Haratian S, Haddad-Sabzevar M. Thermal stability and non-isothermal crystallization kinetics of Ti41.5Cu42.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass [J]. J. Non-cryst. Solids, 2015, 429(1): 164
[13] Xu H, Du Y, Yu D. Effects of Y addition on structural and mechanical properties of CuZrAl bulk metallic glass [J]. T. Nonferr. Metal Soc., 2012, 22(04): 842
[14] Pan J, Chan K C, Chen Q, et al. The effect of microalloying on mechanical properties in CuZrAl bulk metallic glass [J]. J. Alloys Compd., 2010, 504: S74
[15] Xu X, Chen L Y, Zhang G Q, et al. Formation of bulk metallic glasses in Cu45Zr48-xAl7REx(RE=La, Ce, Nd, Gd and 0≤x≤5at.%) [J]. Intermetallics, 2007, 15(8): 1066
[16] Yao Z F, Qiao J C, Zhang C, et al. Non-isothermal crystallization transformation kinetics analysis and isothermal crystallization kinetics in super-cooled liquid region (SLR) of (Ce0.72Cu0.28)90-x-Al10Fex(x=0, 5 or 10) bulk metallic glasses [J]. J. Non-cryst. Solids, 2015, 415(1): 42
[17] Lee K S, Kim S, Lim K R, et al. Crystallization, high temperature deformation behavior and solid-to-solid formability of a Ti-based bulk metallic glass within supercooled liquid region [J]. J. Alloys Compd., 2016, 663(5): 270
[18] Zhou B W, Deng L, Zhang X G, et al. Enhancement of glass-forming ability and plasticity of Cu-rich Cu-Zr-Al bulk metallic glasses by minor addition of Dy [J]. J. Mater. Res., 2014, 29(12): 1362
[19] Qiao J C, Yao Y, Pelletier J M, et al. Understanding of micro-alloying on plasticity in Cu46Zr47-xAl7Dyx(0≤x≤8) bulk metallic glasses under compression: based on mechanical relaxations and theoretical analysis [J]. Int. J. Plastic., 2016, 82: 62
[20] Yu P, Bai H Y, Tang M B, et al. Excellent glass-forming ability in simple Cu50Zr50-based alloys [J]. J. Non-cryst. solids, 2005, 351(14-15): 1328
[21] He G, Chen G L. Intermetallics and formation of bulk glassy alloys [J]. Chin. J. Mater. Res., 1999, 13(6): 569
[21] (何国, 陈国良. 金属间化合物与大块玻璃合金的形成 [J]. 材料研究学报, 1999, 13(6): 569)
[22] Wright W J, Saha R, Nix W D. Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass [J]. Mater. Trans., 2001, 42(04): 642
[23] Yang Y J, Kang F W, Xing D W, et al. Formation and mechanical properties of bulk Cu-Ti-Zr-Ni metallic glasses with high glass forming ability [J]. T. Nonferr. Metal Soc., 2007, 17(1): 16
[24] Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I [J]. Proc. R. Soc. London, Ser. A. Mathematical and Physical Sciences, 1950, 201(1065): 192
[25] Zhang Y, Chen J, Chen G L, et al. Glass formation mechanism of minor yttrium addition in CuZrAl alloys [J]. Appl. Phys. Lett., 2006, 89(13): 131904
[26] Schroers J, Johnson W L. Ductile Bulk Metallic Glass [J]. Phys. Rev. Lett., 2004, 93(25): 255506
doi: 10.1103/PhysRevLett.93.255506 pmid: 15697909
[27] Yang B, Li X, Luo Y D, et al. Effect of minor Sn and Nb additions on the thermal stability and compressive plasticity of Zr-Cu-Fe-Al bulk metallic glass [J]. Acta Metall. Sin., 2015, 51(4): 465
[27] (杨滨, 李鑫, 罗文东等. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响 [J]. 金属学报, 2015, 51(4): 465)
[28] Tan J, Zhang Y, Sun B A, et al. Correlation between internal states and plasticity in bulk metallic glass [J]. Appl. Phys. Lett., 2011, 98(15): 151906
[29] Chen L Y, Setyawan A D, Kato H, et al. Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature [J]. Scr. Mater., 2008, 59(1): 75
[30] Stolpe M, Kruzic J J, Busch R. Evolution of shear bands, free volume and hardness during cold rolling of a Zr-based bulk metallic glass [J]. Acta Mater., 2014, 64: 231
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.