材料研究学报, 2020, 34(8): 605-610 DOI: 10.11901/1005.3093.2020.063

研究论文

添加稀土DyCu50Zr46Al4合金的非晶形成能力和力学性能的影响

李冬梅1, 谭力铭1, 赵晴1, 谢晗晞1, 余鹏,1, 夏雷2

1 重庆师范大学物理与电子工程学院 光电功能材料重庆市重点实验室 重庆 401331

2 上海大学材料研究所 上海大学微结构重点实验室 上海 200072

Effect of Dy Addition on Glass-forming Ability and Mechanical Properties of Cu50Zr46Al4 Bulk Metallic Alloy

LI Dongmei1, TAN Liming1, ZHAO Qing1, XIE Hanxi1, YU Peng,1, XIA Lei2

1 College of Physics and Electronic Engineering Chongqing Normal University, Chongqing Key Laboratory of Photo-Electric Functional Materials, Chongqing 401331, China

2 Laboratory for Microstructure & Institute of Materials, Shanghai University, Shanghai 200072, China

通讯作者: 余鹏,教授,pengyu@cqnu.edu.cn,研究方向为非晶态合金材料的设计、制备与性能应用

责任编辑: 吴岩

收稿日期: 2020-02-27   修回日期: 2020-03-13   网络出版日期: 2020-08-25

基金资助: 重庆市基础研究与前沿探索项目.  cstc2018jcyjAX0329
重庆市基础研究与前沿探索项目.  cstc2018jcyjAX0444
重庆市教委科学技术研究重点项目.  KJZD-K201900501

Corresponding authors: YU Peng, Tel: (023)65362779, E-mail:pengyu@cqnu.edu.cn

Received: 2020-02-27   Revised: 2020-03-13   Online: 2020-08-25

Fund supported: Chongqing Research Program of Basic Research and Frontier Technology.  cstc2018jcyjAX0329
Chongqing Research Program of Basic Research and Frontier Technology.  cstc2018jcyjAX0444
the Science and Technology Research Program of Chongqing Municipal Education Commission.  KJZD-K201900501

作者简介 About authors

李冬梅,女,1988年生,博士

摘要

使用铜模吸铸法制备Cu50-xZr46Al4Dyx(x=0~4)系列合金,研究了Dy对其非晶形成能力和力学性能的影响。结果表明,添加1%~2%(原子分数)的Dy能明显提高Cu50-xZr46Al4Dyx合金的热稳定性和非晶形成能力。添加适量的Dy能提高体系的强度和塑性变形能力。还讨论了添加Dy元素影响Cu50-xZr46Al4Dyx体系非晶形成能力和力学性能的机理。

关键词: 金属材料 ; 镝添加 ; 微合金化 ; 非晶形成能力 ; 力学性能

Abstract

A series of Cu50-xZr46Al4Dyx(x=0~4) alloys is prepared by copper mold casting based on Cu50Zr46Al4 bulk metallic glass (BMG). The effect of Dy addition on the glass forming ability and mechanical properties of Cu50-xZr46Al4Dyx alloy was investigated through thermodynamics and mechanical experiments. It is found that 1%~2% (atomic fraction) Dy addition can significantly improve the thermal stability of Cu50-xZr46Al4Dyx, and the glass forming ability of the alloy. The strength and plastic deformation ability of the alloy can be improved effectively by proper Dy addition. The influence of Dy addition on the glass forming ability and mechanical properties of Cu50-xZr46Al4Dyx is also discussed.

Keywords: metallic materials ; Dy addition ; micro-alloying ; glass-forming ability ; mechanical properties

PDF (3891KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李冬梅, 谭力铭, 赵晴, 谢晗晞, 余鹏, 夏雷. 添加稀土DyCu50Zr46Al4合金的非晶形成能力和力学性能的影响. 材料研究学报[J], 2020, 34(8): 605-610 DOI:10.11901/1005.3093.2020.063

LI Dongmei, TAN Liming, ZHAO Qing, XIE Hanxi, YU Peng, XIA Lei. Effect of Dy Addition on Glass-forming Ability and Mechanical Properties of Cu50Zr46Al4 Bulk Metallic Alloy. Chinese Journal of Materials Research[J], 2020, 34(8): 605-610 DOI:10.11901/1005.3093.2020.063

从上世纪九十年代至今相继开发了各种块体金属玻璃(BMG),其中CuZr基BMG因其较强的非晶形成能力和优异的力学性能而备受关注。例如,Cu64Zr36二元BMG的玻璃转变温度为640 K,过冷液相区宽度(△Tx)达到46 K,压缩断裂强度达到2.0 GPa[1];Cu50Zr50二元BMG的断裂强度为1.79 GPa,塑性变形达到了7.9%[2]。微合金化能改善BMG的性能,掺杂不同原子尺寸的元素可提高体系原子排列的混乱度,从而提高合金的非晶形成能力。例如,在CuZr二元BMG中添加Al元素可制备具有更高热稳定性、强度和塑性的CuZrA1三元金属玻璃[3],且成本较低。其中Cu47.5Zr47.5Al5的塑性应变达到18.0%,断裂强度达到2.265 GPa[4,5]。随着Al含量(原子分数,下同)的提高Cu54.5-xZr45.5Alx(x=3、5、7)金属玻璃体系的热稳定性先增大后减小,当Al含量为5 %时体系的非晶形成能力最好,其压缩和断裂强度都随着Al含量的提高而提高,Al含量为7%的试样断裂强度达到最大[6]。Cu-Zr-Al-Ni体系也具有较高的玻璃形成能力和热稳定性[7]。同时,Cu-Zr-Al金属玻璃还可用作涂层材料,其较高的硬度、弹性模量、耐磨性以及耐蚀性可改善镁合金的综合性能[8]

以CuZrA1体系为基体添加重金属元素或稀土元素,可进一步改善其热力学性能和非晶形成能力。例如,在CuZrA1合金中添加Ag制备的直径为15 mm的Cu40Zr44Al8Ag8和直径为25 mm的Cu36Zr48Al8Ag8 BMG[9,10],以及在CuZrA1合金中添加Pd制备的直径为30 mm的Cu34Zr48Al8Ag8Pd2块体BMG[11,12],都具有良好的热稳定性和力学性能。上述研究结果表明,添加适量的Ag和Pd元素能显著提高CuZrA1合金体系的非晶形成能力。添加微量Fe元素能显著增大Cu44Zr48Al7体系的过冷液相区宽度,并提高其塑性变形能力[13,14]。在Cu45Zr48Al7中添加稀土元素替代相同原子含量的Zr,可制备出一系列的Cu46Zr47-xAl7Mx(M为稀土元素)BMG[15]。Ce和Pr的添加量(原子分数)为4%时合金的非晶形成能力最佳,之后随着Ce和Pr含量的提高其非晶形成能力反而逐渐降低;但是,添加Tb对该合金的非晶形成能力影响不大[16,17]

Dy元素是重稀土元素,掺杂到合金基体更容易进入合金主相,可提高其热力学性能和非晶形成能力[18,19]。本文在Cu50Zr46Al4金属玻璃中添加稀土元素Dy制备一系列Cu50-xZr46Al4Dyx(x=0~4)四元合金,测试分析其相关热学、力学性质的变化,研究Dy对Cu50-xZr46Al4Dyx非晶形成能力和力学性能的影响。

1 实验方法

将纯度为99.99%的金属Cu、Zr、Al和Dy按照设计的合金名义成分Cu50-xZr46Al4Dyx(x=0~4)(原子分数,下同)配料,在高纯氩气保护下用HM630型电弧炉反复熔炼出均匀的合金锭子,再采用铜模吸铸工艺制备成直径为1.5~5.0 mm、长度为60 mm的合金棒。

使用XRD-6100型X射线衍射仪表征合金试样的结构。使用PE-DSC8000型热分析仪对试样进行差示扫描量热(DSC)测试,保护气为氮气,升温速率为20 K/min。使用STA8000型综合热分析仪进行差热分析(DTA)测试,升温速率为20 K/min。使用RGM-300型电子万能试验机完成试样的室温准静态力学测试,应变速率为1×10-4 s-1。用JSM-7800F型扫描电子显微镜观测试样的断裂形貌,使用MHVD-1000/S型多功能显微硬度计测试试样的硬度。

2 结果和讨论

2.1 DyCu50-xZr46Al4Dyx合金非晶形成能力的影响

在Cu50Zr46Al4中添加不同含量的Dy元素替代相同摩尔比例的Cu元素,制备出不同直径的Cu50-xZr46Al4Dyx(x=0,1,2,3,4)棒状试样。图1给出了这种试样的XRD图谱。从图1a可以看出,在直径为1.5 mm的Cu50Zr46Al4试样的XRD图谱中只有漫散射峰,没有出现尖锐的晶化峰,表明试样具有较好的非晶结构。直径增大到3.0 mm的试样,其衍射图谱中探测到微弱的晶化峰,说明样品含有部分晶化相。图1b、c和d分别给出了不同直径的Cu50-xZr46Al4Dyx(x=0~4)棒状试样的XRD图谱。可以看出,在直径为1.5 mm、Dy添加量为1%~3%试样的XRD图谱中只出现与非晶相对应的漫散射峰(图1b),证明试样为完全非晶结构。在Dy含量为4%试样的XRD图谱中出现了明显的晶化峰。图1c给出了直径为3.0 mm试样的XRD图谱,可见Dy含量为1%~2%的试样为完全非晶结构。Dy含量为3%的试样,其XRD图谱中开始出现少许晶化峰。直径为5.0 mm的所有试样,其XRD图谱中均出现明显的晶化衍射峰(图1d)。这些结果表明,Dy含量为1%~2%时,可以制备出相对于Cu50Zr46Al4更大尺寸的Cu50-xZr46Al4Dyx系列非晶态合金,具有更佳的非晶形成能力。表1给出了不同直径Cu50-xZr46Al4Dyx(x=0~4)系列合金的结构状态。

图1

图1   不同直径Cu50-xZr46Al4Dyx(x=0~4)试样的XRD图谱

Fig.1   XRD patterns of Cu50-xZr46Al4Dyx(x=0~4)specimens with different diameters


表1   不同直径Cu50-xZr46Al4Dyx(x=0,1,2,3,4)试样的结构

Table 1  Structures of Cu50-xZr46Al4Dyx (x=0, 1, 2, 3, 4) specimens with different diameters

Specimend=1.5 mmd=3.0 mmd=5.0 mm
Cu50Zr46Al4AA+C/
Cu49Zr46Al4Dy1AAA+C
Cu48Zr46Al4Dy 2AAA+C
Cu47Zr46Al4Dy 3AA+C/
Cu46Zr46Al4Dy 4A+C//

Note: A—amorphous; C—crystal; A+C—mixture of amorphous and crystal

新窗口打开| 下载CSV


根据试样的相关热学参数可分析合金的热稳定性和非晶形成能力。图2a和b给出了直径为1.5 mm的Cu50-xZr46Al4Dyx(x=0~3)试样的DSC和DTA测试结果。其中Cu50Zr46Al4试样的玻璃转变温度Tg=698.5 K、晶化温度Tx=753.7 K、熔化温度Tm=995.6 K;其过冷液相区宽度△Tx=Tx-Tg=55.2 K,表征非晶形成能力的参数γ=Tx/(Tg+Tm)=0.445。在CuZr体系中添加Al可提高合金的液相稳定性,从而提高其非晶形成能力[3]。Zr/Al的原子尺寸比为1.119,Al/Cu的原子尺寸比为1.117,表明Al元素的加入提高了合金原子排列的复杂性,从而有利于形成非晶态无序结构,为在Cu50Zr46Al4体系中添加重稀土元素Dy提供了实验依据。表2归纳总结了Cu50-xZr46Al4Dyx(x=0~3)系列试样的相关热学参数,其中Cu50-xZr46Al4Dyx(x=1,2,3)的玻璃转变温度Tg和晶化温度Tx分别为693.4、685.3、683.1 K和755.6、753.5、747.1 K;熔化温度Tm分别为988.5、993.4、996.6 K。其过冷液相区宽度△Tx分别为66.2、68.2、64.0 K,γ系数为0.449、0.449、0.445。可以看出,Dy元素的添加会降低Cu50Zr46Al4合金的玻璃转变温度,并扩宽过冷液相区宽度。Dy元素的引入会引起合金组成元素间键合性质的变化,而玻璃转变温度和晶化温度是元素间键合变化的宏观表现[19]。与Cu50Zr46Al4相比,Dy含量为1%~2%的Cu50-xZr46Al4Dyx合金的△Txγ参数都提高了,说明添加Dy能提高Cu50Zr46Al4金属玻璃的热稳定性,增强其非晶形成能力。而添加3%的Dy却不能进一步提高过冷液相区宽度和非晶形成能力,说明Dy含量的最佳范围为1%~2%。

图2

图2   直径为1.5 mm的Cu50-xZr46Al4Dyx(x=0,1,2,3)的合金样品升温速率为20 K/min时的DSC和DTA曲线

Fig.2   Curves of (a) DSC and (b) DTA of Cu50-xZr46Al4Dyx(x=0, 1, 2, 3) BMG with a diameter of 1.5 mm under the heating rate of 20 K/min


表2   直径为1.5 mm的Cu50-xZr46Al4Dyx(x=0~4)BMG样品的热学参数

Table 2  Thermal parameters of Cu50-xZr46Al4Dyx(x=0~4) BMG with a diameter of 1.5 mm

SpecimenTg/KTx/KTm/KTx/Kγ
Cu50Zr46Al4698.5753.7995.655.20.445
Cu49Zr46Al4Dy1693.4755.6988.562.20.449
Cu48Zr46Al4Dy2685.3753.5993.468.20.449
Cu47Zr46Al4Dy3683.1747.1996.664.00.445

Note:Tgglass transformation temperature; Tx—crystallization temperature;Tm—melt temperature;Tx=Tx-Tg; γ=Tx/(Tg+Tm)

新窗口打开| 下载CSV


上述实验结果表明,Cu50-xZr46Al4Dyx(x=0~4)合金具有良好的热稳定性和非晶形成能力。负混合焓是形成金属玻璃的有利条件[20],而Cu-Dy和Al-Dy的混合焓分别为-22 kJ/mol和-39 kJ/mol[19],即Dy元素的引入使其与Cu和Al之间产生了较大的负混合焓,从而更加有利于Cu50-xZr46Al4Dyx体系形成金属玻璃合金。另一方面,Dy元素与体系中主要元素的原子尺寸差都大于23%(Cu、Zr、Al和Dy原子半径分别为0.128、0.160、0.143和0.177 nm),Dy原子与周围其他原子的失配使其周围环境产生大幅度畸变,从而提高体系的无序度,使合金的非晶形成能力提高[21]

2.2 添加DyCu50Zr46Al4合金力学性能的影响

图3给出了直径为1.5 mm的Cu50-xZr46Al4Dyx(x=0~4)试样的室温压缩应力-应变曲线。表3总结了不同Dy含量BMG的屈服强度、断裂强度、弹性应变和塑性应变的数值。结果表明,Cu50Zr46Al4合金试样的断裂强度为1.538 GPa,塑性应变仅为0.49%,没有明显的塑性变形过程。而Dy含量为1%~3%的合金试样的强度和塑性均显著提高,表现出明显的屈服过程和塑性变形过程。其中最明显的Cu49Zr46Al4Dy1试样,其断裂强度和塑性分别达到2.062 GPa和7.62%。断裂强度比Cu50Zr46Al4合金试样提高了34%,塑性变形能力提高了约15倍。由此可见,添加适量的Dy元素可显著提高Cu50Zr46Al4合金的强度和塑性。

图3

图3   1.5 mm直径Cu50-xZr46Al4Dyx(x=0~4)BMG试样的室温压缩应力-应变曲线

Fig.3   Compressive stress-strain curves of Cu50-xZr46Al4Dyx(x=0~4)BMGs with a diameter of 1.5 mm at room temperature


表3   直径为1.5 mm的Cu50-xZr46Al4Dyx(x=0~4)BMG的室温压缩力学参数

Table 3  Compressive mechanical parameters of Cu50-xZr46Al4-Dyx(x=0~4) BMGswith a diameter of 1.5 mm at room temperature

Specimensσy / GPaσmax / GPaεy / %εf / %
Cu50Zr46Al41.3751.5382.210.49
Cu49Zr46Al4Dy11.6222.0622.117.62
Cu48Zr46Al4Dy21.5121.8662.144.52
Cu47Zr46Al4Dy31.3161.9212.246.36
Cu46Zr46Al4Dy41.2931.4012.151.29

Note:δyyield strength, δmax— fracture strength, εy— yield strain, εf—fracture strain

新窗口打开| 下载CSV


图4给出了直径为1.5 mm的Cu50-xZr46Al4Dyx(x=0~4)合金压缩试样的断裂面形貌,可见所有试样均表现为典型的非晶断口形貌[22]。在压缩受力过程中蓄积的弹性变形能以绝热方式迅速释放,使材料局部软化,形成粘滞流变层,在断口出现大量清晰可见的脉状纹络[23]。越是脆性金属玻璃其脉状纹络越细小光滑,因此粗大的脉状纹络是韧性金属玻璃压缩断裂的主要特征[24]。Cu46Zr46Al4Dy4试样虽然已有部分晶化,但其断口形貌依然呈现出典型非晶断裂形貌特征。对比各试样的断口形貌,Cu49Zr46Al4Dy1试样断口脉状纹络的密度和宽度最大(图4b),大量清晰可见,周期排布的脉状纹路反映了合金较好的塑性变形能力。其原因可能是,添加微量的Dy有利于剪切带的增生而非直接形成裂纹发生脆断[25~27],在形变过程中能形成更多的剪切带,进而提高合金的塑性。Cu49Zr46Al4Dy1试样的断口形貌,表明其具有较高的压缩强度和塑性变性能力。Qiao等[19]的研究结果也指出,添加Dy会在一定程度上修正体系的塑性变形能力和动力学弛豫过程。此外,添加Dy元素使Cu50Zr46Al4合金具有更加无序的原子结构,增加体系的自由体积,从而有利于合金塑性的提高。添加适量Dy的合金,在压缩过程中表现出明显的屈服过程和加工硬化行为。这种屈服过程、加工硬化和塑性变形行为,可能是合金强度提高的原因。

图4

图4   直径1.5 mm的Cu50-xZr46Al4Dyx(x=0~4)BMG的压缩断裂形貌

Fig.4   Morphology of compressive fracture surfaces of Cu50-xZr46Al4Dyx(x=0~4) BMGs with a diameter of 1.5 mm


图5给出了直径为1.5 mm和3.0 mm的Cu50-xZr46-Al4Dyx(x=0~4)系列合金的维氏硬度随Dy含量的变化趋势。由图5可见,随着Dy含量的提高Cu50-xZr46-Al4Dyx合金的硬度逐渐降低。添加Dy元素使Cu50Zr46Al4基体具有更加无序的原子结构,从而增大体系的自由体积。这个结果,与Stolpe 等提出的非晶合金自由体积的改变与其硬度变化的关系吻合[28~30]。此外,相同Dy含量直径为1.5 mm的试样其硬度均低于直径为3.0 mm的试样(仅考虑完全非晶试样)。其原因是,在吸铸过程中直径为1.5 mm的试样比直径为3.0 mm的试样具有更高的冷却速率,使体系包含了更多的自由体积,使合金的硬度较低。另一方面,添加Dy元素也会改变体系中原子间化学键的强度,从而影响体系的力学性能。结果表明,直径为1.5 mm的Cu50-xZr46Al4Dyx合金,其硬度随着Dy含量的提高而下降的幅度为约5%,而直径增大到3.0 mm的试样其硬度下降的幅度达到20%。综上所述,适量的Dy元素可提高三元Cu50Zr46Al4金属玻璃的强度和塑性,同时使其硬度有所降低。

图5

图5   直径为1.5 mm和3 mm的Cu50-xZr46Al4Dyx(x=0~4)BMG试样的维氏硬度随Dy含量的变化

Fig.5   Vickers hardness values of Cu50-xZr46Al4Dyx(x=0~4) BMGs with diameters of 1.5 mm and 3 mm as a function of Dy concentration


3 结论

在Cu50Zr46Al4中添加不同含量的Dy元素替代相同摩尔比例的Cu元素,用电弧熔炼铜模吸铸法可制备出不同直径的Cu50-xZr46Al4Dyx(x=0~4)棒状合金试样。添加1%~2%的Dy元素可显著提高合金体系的热稳定性和非晶形成能力。添加Dy元素提高了合金原子结构的无序度,有利于剪切带的增生,能减缓压缩过程中主裂纹的产生和扩展,从而提高合金的压缩断裂强度和塑性变形能力。同时,添加Dy元素使合金体系的硬度降低。

参考文献

Xu D, Lohwongwatana B, Duan G, et al.

Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass

[J]. Acta Mater., 2004, 52(9): 2621

[本文引用: 1]

Das J, Tang M B, Kim K B, et al.

“Work-Hardenable” ductile bulk metallic glass

[J]. Phys. Rev. Lett., 2005, 94(20): 205501

DOI      URL     PMID      [本文引用: 1]

Yu P, Bai H Y, Tang M B, et al.

CuZr-base bulk metallic glasses with good glass-forming ability prepared by Al addition

[J]. Acta Phys. Sin., 2005, 54(07): 3284

[本文引用: 2]

(余鹏, 白海洋, 汤美波.

具有优良玻璃形成能力添加Al的CuZr基大块金属玻璃

[J]. 物理学报, 2005, 54(07): 3284)

[本文引用: 2]

Das J, Kim K B, Xu W, et al.

Ductile metallic glasses in supercooled martensitic alloys

[J]. Mater. Trans., 2006, 47(10): 2606

[本文引用: 1]

Kim T H, Lee S R, Bae K H, et al.

Effects of Al/Cu co-doping on crystal structure and chemical composition of Nd-rich phases in Nd-Fe-B sintered magnet

[J]. Acta Mater., 2017, 133: 200

[本文引用: 1]

Zhou K, Liu Y, Pang S, et al.

Formation and properties of centimeter-size Zr-Ti-Cu-Al-Y bulk metallic glasses as potential biomaterials

[J]. J. Alloys Compd., 2016, 656: 389

[本文引用: 1]

Chen W R, Wang Y M, Qiang J B.

The electron concentration-constant and atomic size-constant criterion in Zr-based bulk metallic glasses

[J]. Chin. J. Mater. Res., 2002, 16(2): 219

[本文引用: 1]

(陈伟荣, 王英敏, 羌建兵.

Zr基大块非晶合金成分的等电子浓度和等原子尺寸判据

[J].材料研究学报, 2002, 16(2): 219)

[本文引用: 1]

Liu H B, Wang C S, Gao Y L, et al.

Laser cladding amorphous composite coating of Cu-Zr-Al on magnesium alloy surface

[J]. Chinese J. Lasers, 2006, 33(5): 709

[本文引用: 1]

(刘红宾, 王存山, 高亚丽.

镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层

[J].中国激光, 2006, 33(5): 709)

[本文引用: 1]

Zhang Q, Zhang W, Inoue A.

New Cu-Zr-based bulk metallic glasses with large diameters of up to 1.5 cm

[J]. Scr. Mater., 2006, 55(08): 711

[本文引用: 1]

Zhang W, Zhang Q, Inoue A.

Synthesis and mechanical properties of new Cu-Zr-based glassy alloys with high glass-forming ability

[J]. Adv. Eng. Mater., 2008, 10(11): 1034

[本文引用: 1]

Zhang Q, Zhang W, Inoue A.

Fabrication of new Cu34Pd2Zr48Ag8Al8 bulk glassy alloy with a diameter of 30 mm

[J]. Mater. Trans., 2007, 48(11): 3031

[本文引用: 1]

Haratian S, Haddad-Sabzevar M.

Thermal stability and non-isothermal crystallization kinetics of Ti41.5Cu42.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass

[J]. J. Non-cryst. Solids, 2015, 429(1): 164

[本文引用: 1]

Xu H, Du Y, Yu D.

Effects of Y addition on structural and mechanical properties of CuZrAl bulk metallic glass

[J]. T. Nonferr. Metal Soc., 2012, 22(04): 842

[本文引用: 1]

Pan J, Chan K C, Chen Q, et al.

The effect of microalloying on mechanical properties in CuZrAl bulk metallic glass

[J]. J. Alloys Compd., 2010, 504: S74

[本文引用: 1]

Xu X, Chen L Y, Zhang G Q, et al.

Formation of bulk metallic glasses in Cu45Zr48-xAl7REx(RE=La, Ce, Nd, Gd and 0≤x≤5at.%)

[J]. Intermetallics, 2007, 15(8): 1066

[本文引用: 1]

Yao Z F, Qiao J C, Zhang C, et al.

Non-isothermal crystallization transformation kinetics analysis and isothermal crystallization kinetics in super-cooled liquid region (SLR) of (Ce0.72Cu0.28)90-x-Al10Fex(x=0, 5 or 10) bulk metallic glasses

[J]. J. Non-cryst. Solids, 2015, 415(1): 42

[本文引用: 1]

Lee K S, Kim S, Lim K R, et al.

Crystallization, high temperature deformation behavior and solid-to-solid formability of a Ti-based bulk metallic glass within supercooled liquid region

[J]. J. Alloys Compd., 2016, 663(5): 270

[本文引用: 1]

Zhou B W, Deng L, Zhang X G, et al.

Enhancement of glass-forming ability and plasticity of Cu-rich Cu-Zr-Al bulk metallic glasses by minor addition of Dy

[J]. J. Mater. Res., 2014, 29(12): 1362

[本文引用: 1]

Qiao J C, Yao Y, Pelletier J M, et al.

Understanding of micro-alloying on plasticity in Cu46Zr47-xAl7Dyx(0≤x≤8) bulk metallic glasses under compression: based on mechanical relaxations and theoretical analysis

[J]. Int. J. Plastic., 2016, 82: 62

[本文引用: 4]

Yu P, Bai H Y, Tang M B, et al.

Excellent glass-forming ability in simple Cu50Zr50-based alloys

[J]. J. Non-cryst. solids, 2005, 351(14-15): 1328

[本文引用: 1]

He G, Chen G L.

Intermetallics and formation of bulk glassy alloys

[J]. Chin. J. Mater. Res., 1999, 13(6): 569

[本文引用: 1]

(何国, 陈国良.

金属间化合物与大块玻璃合金的形成

[J]. 材料研究学报, 1999, 13(6): 569)

[本文引用: 1]

Wright W J, Saha R, Nix W D.

Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass

[J]. Mater. Trans., 2001, 42(04): 642

[本文引用: 1]

Yang Y J, Kang F W, Xing D W, et al.

Formation and mechanical properties of bulk Cu-Ti-Zr-Ni metallic glasses with high glass forming ability

[J]. T. Nonferr. Metal Soc., 2007, 17(1): 16

[本文引用: 1]

Taylor G I.

The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I

[J]. Proc. R. Soc. London, Ser. A. Mathematical and Physical Sciences, 1950, 201(1065): 192

[本文引用: 1]

Zhang Y, Chen J, Chen G L, et al.

Glass formation mechanism of minor yttrium addition in CuZrAl alloys

[J]. Appl. Phys. Lett., 2006, 89(13): 131904

[本文引用: 1]

Schroers J, Johnson W L.

Ductile Bulk Metallic Glass

[J]. Phys. Rev. Lett., 2004, 93(25): 255506

DOI      URL     PMID     

We report on experimental evidence of pronounced global plasticity measured in monolithic Pt57.5Cu14.7Ni5.3P22.5 bulk metallic glass under both bending and unconfined compression loading conditions. A plastic strain of 20% is measured, never before seen in metallic glasses. Also, permanent deformation and a strain exceeding 3% before failure is observed during bending of 4 mm thick samples. To date, no monolithic metallic material has exhibited such a combination of high strength, extensive ductility, and high elastic limit. The large plasticity is reflected in a high Poisson ratio of 0.42, which causes the tip of a shear band to extend rather than initiate a crack. This results in the formation of multiple shear bands and is the origin of the observed large global ductility and very high fracture toughness, approximately 80 MPa m(-1/2).

Yang B, Li X, Luo Y D, et al.

Effect of minor Sn and Nb additions on the thermal stability and compressive plasticity of Zr-Cu-Fe-Al bulk metallic glass

[J]. Acta Metall. Sin., 2015, 51(4): 465

[本文引用: 1]

(杨滨, 李鑫, 罗文东.

微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响

[J]. 金属学报, 2015, 51(4): 465)

[本文引用: 1]

Tan J, Zhang Y, Sun B A, et al.

Correlation between internal states and plasticity in bulk metallic glass

[J]. Appl. Phys. Lett., 2011, 98(15): 151906

[本文引用: 1]

Chen L Y, Setyawan A D, Kato H, et al.

Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature

[J]. Scr. Mater., 2008, 59(1): 75

Stolpe M, Kruzic J J, Busch R.

Evolution of shear bands, free volume and hardness during cold rolling of a Zr-based bulk metallic glass

[J]. Acta Mater., 2014, 64: 231

[本文引用: 1]

/