|
|
汽轮机转子10%Cr钢的高温低周疲劳特性 |
崔璐1, 康文泉1, 邹方1, 魏文澜1, 李臻1, 王澎2( ) |
1.西安石油大学机械工程学院 西安 710065 2.蜂巢动力系统(江苏)有限公司 扬中 212214 |
|
High Temperature Low Cycle Fatigue Characteristics of Steam Turbine Rotor Steel 10%Cr |
CUI Lu1, KANG Wenquan1, ZOU Fang1, WEI Wenlan1, LI Zhen1, WANG Peng2( ) |
1.School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China 2.HYCET Engine System (Jiangsu) Co. Ltd. , Yangzhong 212214, China |
引用本文:
崔璐, 康文泉, 邹方, 魏文澜, 李臻, 王澎. 汽轮机转子10%Cr钢的高温低周疲劳特性[J]. 材料研究学报, 2021, 35(5): 371-380.
Lu CUI,
Wenquan KANG,
Fang ZOU,
Wenlan WEI,
Zhen LI,
Peng WANG.
High Temperature Low Cycle Fatigue Characteristics of Steam Turbine Rotor Steel 10%Cr[J]. Chinese Journal of Materials Research, 2021, 35(5): 371-380.
1 |
Cui L, Wang P, Hoche H, et al. The influence of temperature transients on the lifetime of modern high-chromium rotor steel under service-type loading [J]. Mater. Sci. Eng. A, 2013, 560: 767
|
2 |
Rauch M, Roos E. Life assessment of multiaxially cyclic loaded turbine components [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31(6): 441
|
3 |
Cui L, Shi H M, Zhang T, et al. Creep fatigue crack initiation behavior of 10%Cr heat resistant steel under thermomechanical loading [J]. J. Mater. Eng., 2017, 45(9): 143
|
3 |
崔璐, 石红梅, 张涛等. 热交变载荷下10%Cr耐热钢蠕变疲劳裂纹萌生特征 [J]. 材料工程, 2017, 45(9): 143
|
4 |
Avery D Z, King W T, Allison P G, et al. Low-cycle fatigue behavior of thin-sheet extruded aluminum alloy [J]. J Fail. Anal. Preven., 2020, 20(1): 95
|
5 |
Nikitin I, Besel M. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045 [J]. Mater. Sci. Eng. A, 2008, 491(1-2): 297
|
6 |
Zhang P, Li Z M, Yue H Y. Strain-controlled cyclic deformation behavior of cast Mg-2.99Nd-0.18Zn-0.38Zr and AZ91D magnesium alloys [J]. J. Mater. Sci., 2016, 51(11): 5469
|
7 |
Yuan Y L, He G Q, Fan K L, et al. Low cycle fatigue behavior of gray cast iron used for engine [J]. Chinese Journal of Materials Research, 2013, 27(5): 469
|
7 |
袁永立, 何国球, 樊康乐等. 发动机用灰铸铁的低周疲劳行为 [J]. 材料研究学报, 2013, 27(5): 469
|
8 |
Zhang Q B, Zhang J X. Fatigue crack growth behavior of a new type of 10%Cr martensitic steel welded joints with Ni-based weld metal [J]. J. Mater. Eng. Perform., 2017, (26): 3921
|
9 |
He J, Cui Z, Chen F, et al. The new ductile fracture criterion for 30Cr2Ni4MoV ultra-super-critical rotor steel at elevated temperatures [J]. Mater. Des., 2013, 52: 547
|
10 |
Nikulin I, Sawaguchi T, Kushibe A, et al. Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy [J]. Int. J. Fatigue., 2016, 88: 132
|
11 |
Schemmel J. Beschreibung des verformungs-, festigkeits- und versagens- verhaltens von komponenten im kriechbereich unter instationärer beanspruchung mit einem elastisch-viskoplastischen werkstoffmodell [D]. Germany, Universität Stuttgart, D93, 2003
|
12 |
Fournie B, Sauzay M, Pineau A. Micromechanical model of the high temperature cyclic behavior of 9~12%Cr martensitic steels [J]. Int. J. Plast., 2011, (27): 1803
|
13 |
Simon A, Scholz A, Berger C. Validation of a constitutive material model with anisothermal uniaxial and biaxial experiments[J]. Materialpruefung, 2009, 51(9): 532
|
14 |
Götz G. Langzeitentwicklung der mikrostruktur neuer 9~12% chromstähle für den einsatz in kraftwerken[D]. Germany, Universität Erlangen-Nürnberg, 2004
|
15 |
Dubey J S, Chilukuru H, Chakravartty J K, et al. Effects of cyclic deformation on subgrain evolution and creep in 9~12% Cr-steels [J]. Mater. Sci. Eng. A, 2005, (406): 152
|
16 |
Cui L, Wang P. Two lifetime estimation models for steam turbine components under thermomechanical creep-fatigue loading [J]. Int. J. Fatigue., 2014, (59): 129
|
17 |
Wang P, Cui L, Scholz A, et al. Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents [J]. Int. J. Fatigue., 2014, (67): 220
|
18 |
Ennis P J, Zielinska-Lipiec A, Wachter O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant [J]. Acta Mater., 1997, 45(1): 4901
|
19 |
International Organization for Standardization Technical Committee. Metallic materials-fatigue testing-axial-strain-controlled method: [S]. Geneva: International Organization for Standardization, 2003
|
20 |
Wu H L, Zhu Y M, Jia G Q. Low cycle fatigue behaviors of X12CrMoWVNbN10-1-1 steel for rotors at room temperature [J]. Journal of University of Science and Technology Beijing, 2011, 33(7): 841
|
20 |
吴海利, 朱月梅, 贾国庆. X12CrMoWVNbN10-1-1转子钢室温低周疲劳特性 [J]. 北京科技大学学报, 2011, 33(7): 841
|
21 |
Li S M. Mechanical Fatigue and Reliability Design [M]. Beijing: Science Press, 2007: 109
|
21 |
李舜酩. 机械疲劳与可靠性设计 [M]. 北京: 科学出版社, 2007: 109
|
22 |
Yao W X. Fatigue Life Estimation of Structures [M]. Beijing: Science Press, 2019: 57
|
22 |
姚卫星. 结构疲劳寿命分析 [M]. 北京: 科学出版社, 2019: 57
|
23 |
Kun F, Carmona H A, Jr Andrade J S, et al. Universality behind Basquin's law of fatigue [J]. Physical review letters, 2008, 100(9): 094301
|
24 |
Wei W L, Han L H, Feng Y R, et al. High temperature low cycle fatigue behavior of 80SH steel for thermal recovery well casing affected by dynamic strain aging [J]. Mater. Mech. Eng., 2019, 43(9): 54
|
24 |
魏文澜, 韩礼红, 冯耀荣等. 动态应变时效影响下热采井套管用80SH钢的高温低周疲劳行为 [J]. 机械工程材料, 2019, 43(9): 54
|
25 |
Manson S S. Fatigue: A cpmplex subject-some simple approximations [J]. Experimental Mechanics, 1965, 5(4): 193
|
26 |
Coffin L F J. A study of the effects of cyclic thermal stresses on a ductile metal [J]. Transactions of the American Society of Mechanical Engineerings, 1953, 22(6): 419
|
27 |
Yang B X, Tian X, Li Y, et al. Experimental study on low-cycle fatigue property of 10Cr rotor steel [J]. Journal of Chinese Society of Power Engineering, 2018, 38(1): 74
|
27 |
杨百勋, 田晓, 李杨等. 10Cr转子钢的低周疲劳特性试验研究 [J]. 动力工程学报, 2018, 38(1): 74
|
28 |
Wang H, Xu Y L, Sun Q Y, et al. Low-cycle fatigue behavior and deformation substructure of Ti-2Al-2.5Zr alloy at 673 K [J]. Chinese Journal of Materials Research, 2010, 24(2): 165
|
28 |
王航, 徐燕灵, 孙巧艳等. Ti-2Al-2.5Zr合金的高温低周疲劳行为 [J]. 材料研究学报, 2010, 24(2): 165
|
29 |
Shi H M. The influence of complex creep fatigue loading on life of untra supercritical steam turbine rotor steel [D]. Xi'an: Xi'an Shiyou University, 2017
|
29 |
石红梅. 复杂蠕变疲劳载荷对超超临界汽轮机转子钢寿命的影响 [D]. 西安: 西安石油大学, 2017
|
30 |
Fournier B, Sauzay M, Barcelo F, et al. Creep-fatigue interactions in a 9 pct Cr-1 pct Mo martensitic steel: part II. microstructural evolutions [J]. Metall. Mater. Trans. A, 2009, 40(2): 330
|
31 |
Armas A F, Petersen C, Schmitt R, et al. Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater. A, 2005, 329-333: 252
|
32 |
Schweizer C, Seifert T, Nieweg B, et al. Mechanisms and modelling of fatigue crack growth under combined low and high cycle fatigue loading [J]. Int. J. Fatigue., 2011, 33(2): 194
|
33 |
Zhao P, Xuan F Z. Ratchetting behavior of advanced 9~12% chromium ferrite steel under creep-fatigue loadings: Fracture modes and dislocation patterns [J]. Mater. Sci. Eng. A, 2012, 539: 301
|
34 |
Scholz A, Berger C. Deformation and life assessment of high temperature materials under creep fatigue loading [J]. Materialwissenschaft und Werkstofftechnik, 2006, 36(11): 722
|
35 |
Mu H. Research on subgrain evolution of 9%~12%Cr steam turbine rotor steel under creep and fatigue load [D]. Xi'an: Xi'an Shiyou University, 2018
|
35 |
穆豪. 蠕变疲劳载荷下9%~12%Cr汽轮机转子钢亚晶粒演变规律研究 [D]. 西安: 西安石油大学, 2017
|
36 |
Zhou H W, Bai F M, Yang L, et al. Low-cycle fatigue behavior of 1100 MPa grade high-strength steel [J]. Acta. Metall. Sin., 2020, 56(7): 937
|
36 |
周红伟, 白凤梅, 杨磊等. 1100 MPa级高强钢的低周疲劳行为 [J]. 金属学报, 2020, 56(7): 937
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|