Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (5): 371-380    DOI: 10.11901/1005.3093.2020.283
  研究论文 本期目录 | 过刊浏览 |
汽轮机转子10%Cr钢的高温低周疲劳特性
崔璐1, 康文泉1, 邹方1, 魏文澜1, 李臻1, 王澎2()
1.西安石油大学机械工程学院 西安 710065
2.蜂巢动力系统(江苏)有限公司 扬中 212214
High Temperature Low Cycle Fatigue Characteristics of Steam Turbine Rotor Steel 10%Cr
CUI Lu1, KANG Wenquan1, ZOU Fang1, WEI Wenlan1, LI Zhen1, WANG Peng2()
1.School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China
2.HYCET Engine System (Jiangsu) Co. Ltd. , Yangzhong 212214, China
引用本文:

崔璐, 康文泉, 邹方, 魏文澜, 李臻, 王澎. 汽轮机转子10%Cr钢的高温低周疲劳特性[J]. 材料研究学报, 2021, 35(5): 371-380.
Lu CUI, Wenquan KANG, Fang ZOU, Wenlan WEI, Zhen LI, Peng WANG. High Temperature Low Cycle Fatigue Characteristics of Steam Turbine Rotor Steel 10%Cr[J]. Chinese Journal of Materials Research, 2021, 35(5): 371-380.

全文: PDF(14482 KB)   HTML
摘要: 

在分别控制应变和温度的条件下进行超超临界汽轮机转子10%Cr钢的高温低周疲劳实验,用SEM和TEM分析了10%Cr钢实验前后的表面形貌和亚晶粒结构。根据实验数据拟合应力-应变曲线、应力-寿命曲线和应变-寿命曲线,得到了反映材料高温低周疲劳特性的Ramberg-Osgood参数和Manson-Coffin参数。对比分析了低周疲劳实验初始和结束两个阶段的滞回曲线和应力-寿命曲线,并讨论了不同温度和不同应变幅控制的塑性应变。结果表明,在高温工况下10%Cr钢的塑性应变较为明显,随着应变幅的增大钢的疲劳寿命降低,随着循环周期的变化塑性应变速率经历了下降-过渡-上升三个阶段,曲线出现拐点。最大裂纹长度随循环周期呈非线性扩展,高温低周疲劳载荷使钢中的亚晶粒尺寸增大。

关键词 金属材料高温低周疲劳应变与温度控制塑性应变裂纹扩展循环软化    
Abstract

High temperature low cycle fatigue performance of the ultra-supercritical steam turbine rotor steel 10%Cr was studied by controlling the strain and temperature, as well as the characterization of surface morphology and sub-grain structure with SEM and TEM for the steel before and after test. Based on the experimental data the Ramberg-Osgood parameters and Manson-Coffin parameters of the high temperature and low cycle fatigue characteristics of the material were obtained through fitting the stress-strain curves, stress-life curves and strain-life curves. The hysteresis loops and stress-life curves in the initial and final phases of the high temperature low cycle fatigue experiment were analyzed comparatively in terms of the relation between plastic strains with temperature and strain amplitude. Results show that the plastic strain of steel 10%Cr is much obvious under high temperature conditions, and the fatigue life of the material decreases with the increasing strain amplitude. The plastic strain rate experienced three stages with the fatigue cycle, namely the falling stage-the transition stage-the rising stage, and the plastic strain rate has an inflection point with the variation of fatigue cycles. The maximum crack length varied nonlinearly with the number of cycles, and as a result of the high temperature and low cycle fatigue process, the size of sub-grains of the steel increases.

Key wordsmetallic materials    high temperature low cycle fatigue    controlling strain and temperature    plastic strain    crack propagation    cyclic softening
收稿日期: 2020-07-12     
ZTFLH:  TK265  
基金资助:国家自然科学基金(51305348);西安石油大学青年创新团队基金(2019QNKYCXTD10);西安石油大学研究生创新与实践能力培养计划(YCS19113058)
作者简介: 崔璐,女,1979年生,博士,教授
CCrMoWNiVNbNMnSiP
0.1210.71.041.040.760.160.050.060.420.10.007
表1  10%Cr钢的化学成分(质量分数,%)

Rp0.2

/MPa

Rm

/MPa

A

/%

Z

/%

Hardness(HV30)

Ak

/J

E

/MPa

79089517.160.329551213420
表2  10%Cr钢的力学性能
图1  低周疲劳试样的尺寸
Temperature/℃Room temperature(27)500550600
Strain Δε/%0.80.80.80.3~1.1
表3  高温低周疲劳实验条件
图2  10%Cr钢在600℃的低周疲劳应力-应变曲线
图3  10%Cr钢在600℃的低周疲劳应力-寿命曲线
Kˊnˊσˊfbεˊfc
338.77240.0708461.8312-0.03841.0131-0.8984
表4  10%Cr钢低周疲劳拟合出的特性参数
图4  10%Cr钢在600℃的低周疲劳应变-寿命曲线
图5  10%Cr钢在T=600℃、Δε=1.1%条件下的滞回曲线和对应的应力-寿命曲线
图6  10%Cr钢在不同温度的塑性应变
图7  在不同应变幅下塑性应变速率(dΔεp/dN)-循环周期(N)曲线
图8  不同寿命阶段的裂纹扩展深度
图9  高温低周疲劳的最大裂纹长度随循环周期的变化趋势
图10  N=600试样腐蚀前后裂纹尖端的对比
图11  不同寿命阶段的金相照片
图12  10%Cr钢中亚晶粒的TEM照片
1 Cui L, Wang P, Hoche H, et al. The influence of temperature transients on the lifetime of modern high-chromium rotor steel under service-type loading [J]. Mater. Sci. Eng. A, 2013, 560: 767
2 Rauch M, Roos E. Life assessment of multiaxially cyclic loaded turbine components [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31(6): 441
3 Cui L, Shi H M, Zhang T, et al. Creep fatigue crack initiation behavior of 10%Cr heat resistant steel under thermomechanical loading [J]. J. Mater. Eng., 2017, 45(9): 143
3 崔璐, 石红梅, 张涛等. 热交变载荷下10%Cr耐热钢蠕变疲劳裂纹萌生特征 [J]. 材料工程, 2017, 45(9): 143
4 Avery D Z, King W T, Allison P G, et al. Low-cycle fatigue behavior of thin-sheet extruded aluminum alloy [J]. J Fail. Anal. Preven., 2020, 20(1): 95
5 Nikitin I, Besel M. Correlation between residual stress and plastic strain amplitude during low cycle fatigue of mechanically surface treated austenitic stainless steel AISI 304 and ferritic-pearlitic steel SAE 1045 [J]. Mater. Sci. Eng. A, 2008, 491(1-2): 297
6 Zhang P, Li Z M, Yue H Y. Strain-controlled cyclic deformation behavior of cast Mg-2.99Nd-0.18Zn-0.38Zr and AZ91D magnesium alloys [J]. J. Mater. Sci., 2016, 51(11): 5469
7 Yuan Y L, He G Q, Fan K L, et al. Low cycle fatigue behavior of gray cast iron used for engine [J]. Chinese Journal of Materials Research, 2013, 27(5): 469
7 袁永立, 何国球, 樊康乐等. 发动机用灰铸铁的低周疲劳行为 [J]. 材料研究学报, 2013, 27(5): 469
8 Zhang Q B, Zhang J X. Fatigue crack growth behavior of a new type of 10%Cr martensitic steel welded joints with Ni-based weld metal [J]. J. Mater. Eng. Perform., 2017, (26): 3921
9 He J, Cui Z, Chen F, et al. The new ductile fracture criterion for 30Cr2Ni4MoV ultra-super-critical rotor steel at elevated temperatures [J]. Mater. Des., 2013, 52: 547
10 Nikulin I, Sawaguchi T, Kushibe A, et al. Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe-15Mn-10Cr-8Ni-4Si seismic damping alloy [J]. Int. J. Fatigue., 2016, 88: 132
11 Schemmel J. Beschreibung des verformungs-, festigkeits- und versagens- verhaltens von komponenten im kriechbereich unter instationärer beanspruchung mit einem elastisch-viskoplastischen werkstoffmodell [D]. Germany, Universität Stuttgart, D93, 2003
12 Fournie B, Sauzay M, Pineau A. Micromechanical model of the high temperature cyclic behavior of 9~12%Cr martensitic steels [J]. Int. J. Plast., 2011, (27): 1803
13 Simon A, Scholz A, Berger C. Validation of a constitutive material model with anisothermal uniaxial and biaxial experiments[J]. Materialpruefung, 2009, 51(9): 532
14 Götz G. Langzeitentwicklung der mikrostruktur neuer 9~12% chromstähle für den einsatz in kraftwerken[D]. Germany, Universität Erlangen-Nürnberg, 2004
15 Dubey J S, Chilukuru H, Chakravartty J K, et al. Effects of cyclic deformation on subgrain evolution and creep in 9~12% Cr-steels [J]. Mater. Sci. Eng. A, 2005, (406): 152
16 Cui L, Wang P. Two lifetime estimation models for steam turbine components under thermomechanical creep-fatigue loading [J]. Int. J. Fatigue., 2014, (59): 129
17 Wang P, Cui L, Scholz A, et al. Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents [J]. Int. J. Fatigue., 2014, (67): 220
18 Ennis P J, Zielinska-Lipiec A, Wachter O, et al. Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant [J]. Acta Mater., 1997, 45(1): 4901
19 International Organization for Standardization Technical Committee. Metallic materials-fatigue testing-axial-strain-controlled method: [S]. Geneva: International Organization for Standardization, 2003
20 Wu H L, Zhu Y M, Jia G Q. Low cycle fatigue behaviors of X12CrMoWVNbN10-1-1 steel for rotors at room temperature [J]. Journal of University of Science and Technology Beijing, 2011, 33(7): 841
20 吴海利, 朱月梅, 贾国庆. X12CrMoWVNbN10-1-1转子钢室温低周疲劳特性 [J]. 北京科技大学学报, 2011, 33(7): 841
21 Li S M. Mechanical Fatigue and Reliability Design [M]. Beijing: Science Press, 2007: 109
21 李舜酩. 机械疲劳与可靠性设计 [M]. 北京: 科学出版社, 2007: 109
22 Yao W X. Fatigue Life Estimation of Structures [M]. Beijing: Science Press, 2019: 57
22 姚卫星. 结构疲劳寿命分析 [M]. 北京: 科学出版社, 2019: 57
23 Kun F, Carmona H A, Jr Andrade J S, et al. Universality behind Basquin's law of fatigue [J]. Physical review letters, 2008, 100(9): 094301
24 Wei W L, Han L H, Feng Y R, et al. High temperature low cycle fatigue behavior of 80SH steel for thermal recovery well casing affected by dynamic strain aging [J]. Mater. Mech. Eng., 2019, 43(9): 54
24 魏文澜, 韩礼红, 冯耀荣等. 动态应变时效影响下热采井套管用80SH钢的高温低周疲劳行为 [J]. 机械工程材料, 2019, 43(9): 54
25 Manson S S. Fatigue: A cpmplex subject-some simple approximations [J]. Experimental Mechanics, 1965, 5(4): 193
26 Coffin L F J. A study of the effects of cyclic thermal stresses on a ductile metal [J]. Transactions of the American Society of Mechanical Engineerings, 1953, 22(6): 419
27 Yang B X, Tian X, Li Y, et al. Experimental study on low-cycle fatigue property of 10Cr rotor steel [J]. Journal of Chinese Society of Power Engineering, 2018, 38(1): 74
27 杨百勋, 田晓, 李杨等. 10Cr转子钢的低周疲劳特性试验研究 [J]. 动力工程学报, 2018, 38(1): 74
28 Wang H, Xu Y L, Sun Q Y, et al. Low-cycle fatigue behavior and deformation substructure of Ti-2Al-2.5Zr alloy at 673 K [J]. Chinese Journal of Materials Research, 2010, 24(2): 165
28 王航, 徐燕灵, 孙巧艳等. Ti-2Al-2.5Zr合金的高温低周疲劳行为 [J]. 材料研究学报, 2010, 24(2): 165
29 Shi H M. The influence of complex creep fatigue loading on life of untra supercritical steam turbine rotor steel [D]. Xi'an: Xi'an Shiyou University, 2017
29 石红梅. 复杂蠕变疲劳载荷对超超临界汽轮机转子钢寿命的影响 [D]. 西安: 西安石油大学, 2017
30 Fournier B, Sauzay M, Barcelo F, et al. Creep-fatigue interactions in a 9 pct Cr-1 pct Mo martensitic steel: part II. microstructural evolutions [J]. Metall. Mater. Trans. A, 2009, 40(2): 330
31 Armas A F, Petersen C, Schmitt R, et al. Cyclic instability of martensite laths in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater. A, 2005, 329-333: 252
32 Schweizer C, Seifert T, Nieweg B, et al. Mechanisms and modelling of fatigue crack growth under combined low and high cycle fatigue loading [J]. Int. J. Fatigue., 2011, 33(2): 194
33 Zhao P, Xuan F Z. Ratchetting behavior of advanced 9~12% chromium ferrite steel under creep-fatigue loadings: Fracture modes and dislocation patterns [J]. Mater. Sci. Eng. A, 2012, 539: 301
34 Scholz A, Berger C. Deformation and life assessment of high temperature materials under creep fatigue loading [J]. Materialwissenschaft und Werkstofftechnik, 2006, 36(11): 722
35 Mu H. Research on subgrain evolution of 9%~12%Cr steam turbine rotor steel under creep and fatigue load [D]. Xi'an: Xi'an Shiyou University, 2018
35 穆豪. 蠕变疲劳载荷下9%~12%Cr汽轮机转子钢亚晶粒演变规律研究 [D]. 西安: 西安石油大学, 2017
36 Zhou H W, Bai F M, Yang L, et al. Low-cycle fatigue behavior of 1100 MPa grade high-strength steel [J]. Acta. Metall. Sin., 2020, 56(7): 937
36 周红伟, 白凤梅, 杨磊等. 1100 MPa级高强钢的低周疲劳行为 [J]. 金属学报, 2020, 56(7): 937
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.