Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 291-298    DOI: 10.11901/1005.3093.2019.539
  研究论文 本期目录 | 过刊浏览 |
制备工艺对非晶磁粉芯磁性能的影响
顾伟1, 张志键1(), 杨佳泉2()
1.上海置信电气非晶有限公司 上海 201799
2.上海置信电气股份有限公司 上海 200335
Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores
GU Wei1, ZHANG Zhijian1(), YANG Jiaquan2()
1.Shanghai Zhixin Electric Amorphous Co. Ltd. , Shanghai 201799, China
2.Shanghai Zhixin Electric Co. Ltd. , Shanghai 202335, China
引用本文:

顾伟, 张志键, 杨佳泉. 制备工艺对非晶磁粉芯磁性能的影响[J]. 材料研究学报, 2020, 34(4): 291-298.
Wei GU, Zhijian ZHANG, Jiaquan YANG. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. Chinese Journal of Materials Research, 2020, 34(4): 291-298.

全文: PDF(5991 KB)   HTML
摘要: 

研究了粒度配比和绝缘剂对非晶磁粉芯性能的影响。改变非晶粉末的粒度配比,研究了非晶磁粉芯的压制密度、磁导率、损耗以及直流偏置能力等性能的变化。结果表明,粒度配比为-140至+170目占10%,-170至+200目占30%;-200至+350目占30%,-350至+1000目占30%能提高非晶磁粉芯的压制密度,从而提高直流偏置能力和降低磁损耗;使用不同的绝缘剂封装非晶磁粉芯时,使用磷酸溶液比使用水玻璃溶液能更有效地降低磁损耗和提高直流偏置能力;低熔点玻璃粉在非晶磁粉芯中不仅起绝缘剂作用,还起粘结剂作用。使用废旧非晶铁芯制备的非晶磁粉芯与使用新铁硅硼合金制备的非晶磁粉芯,其磁性能没有明显的不同。

关键词 金属材料非晶磁粉芯粒度配比绝缘方案磁性能    
Abstract

The effect of particle size-grading and the packaging with various insulating agents on the properties of amorphous magnetic powder cores was investigated. Firstly, the variations of compression density, magnetic permeability, loss and DC biasing capability of amorphous magnetic powder cores were studied by changing the particle size-grading of amorphous powder. It was found that with magnetic powder of particle size-grading as 10%, 30%, 30% and 30% for particles with size in between -140~+170, -170~+200, -200~+350 and -350 ~+1000 mesh respectively, the compacting density of the amorphous magnetic powder cores increased, thereby the DC biasing capability increased, while the magnetic loss decreased. Secondly, different insulating agents were used to encapsulate the amorphous magnetic powder cores. The results show that using phosphoric acid as insulating agent can reduce the magnetic loss and improve the DC biasing capability more effectively than using water glass as insulating agent. Thirdly, low-melting glass frit not only acts as an insulator in the amorphous magnetic powder cores but also acts as a binder. Finally, the magnetic properties of the amorphous magnetic powder cores prepared by using the powder of recycled waste amorphous iron cores are not significantly different from those prepared by using the powder of the ordinary iron silicon boron alloy.

Key wordsmetal materials    amorphous magnetic powder cores    particle size ratio    insulation scheme    magnetic properties
收稿日期: 2019-11-18     
ZTFLH:  TB31  
基金资助:国家电网有限公司科技项目-非晶带材综合环保利用关键技术研究及应用(No. 520940170010)
作者简介: 顾伟,男,1973年生,高级工程师
Serial number-140~+170 mesh-170~+200 mesh-200~+350 mesh-350~+1000 mesh
Sample 110%30%30%30%
Sample 210%10%40%40%
Sample 340%40%10%10%
Sample 4100%---
Sample 5---100%
Sample 6-50%50%-
表1  六种非晶粉末样品的粒度组成
Case numberFirst stepSecond stepThird stepFourth step
Experiment aPhosphoric acid solutionLow melting glass powderSilicone resinZinc stearate
Experiment bWater glass solutionLow melting glass powderSilicone resinZinc stearate
Experiment cPhosphoric acid solution-Silicone resinZinc stearate
Experiment dWater glass solution-Silicone resinZinc stearate
表2  4种不同绝缘工艺方案
Serial numberRaw material sourcesParticle size composition

Insulation

scheme

Sample 1Recycling scrap amorphous iron coreSameSame
Sample 2Iron silicon boron alloySameSame
表3  不同的原材料制备方案
图1  用废旧非晶铁芯制备的非晶粉末的XRD图谱
图2  破碎后的非晶原粉(粒度-140~+170目)的扫描电镜照片
图3  压制成型的非晶磁粉芯内部形貌扫描电镜照片
图4  六组非晶粉末样品的粒度分布
Serial number

Fluidity

/s

Bulk density /g·cm-3

Core weight

/g

Pressed magnetic ring density

/g·cm-3

Magnetic permeability

μ

Loss Pcv

(100 kHz/50 mT)

/kw·m-3

DC bias capability

/%

Sample 13.502.8525.855.756013068.5%
Sample 26.502.7525.655.706013067.0%
Sample 33.602.8425.805.726015568.0%
Sample 43.202.8025.295.626016566.0%
Sample 50.002.6024.755.506013565.0%
Sample 64.002.8425.875.756013068.0%
表4  不同粒度配比的非晶粉末对磁性能的影响
图5  六组样品的直流偏置能力与压制密度的关系
图6  六组样品的松装密度与压制密度的关系
Case number

Resistivity ρ

/Ω·m

Loss Pcv

(100 kHz/50 mT)

/kw·m-3

DC bias capability

(100 Oe)

/%

Strength

/N

Experiment a2.113068.5%320
Experiment b1.515066.5%330
Experiment c2.013568.2%160
Experiment d1.416066.8%250
表5  不同的绝缘方案对磁性能及强度的影响
图7  热处理后非晶磁粉芯的内部形貌和能谱分析
Serial number

Raw material

sources

Loss Pcv

(100 kHz/50 mT)

/kw·m-3

DC bias capability

(100 Oe)

/%

Sample 1Recycling scrap amorphous iron core13068.5%
Sample 2

Iron silicon

boron alloy

12968.6%
表6  原材料对非晶磁粉芯性能的影响
[1] Shokrollahi H. The magnetic and structural properties of the most important alloys of iron produced by mechanical alloying [J]. Materials and Design, 2009, 30(9): 3374
[2] Du Y. Study on preparation and properties of high frequency iron-based composite soft magnetic powder core [D]. Nanchang: Nanchang University, 2009
[2] (杜琰. 高频铁基复合材料软磁粉芯制备及其性能研究 [D]. 南昌: 南昌大学, 2009)
[3] Li J Y, He P. Study on improving the magnetic properties of Ni-Fe powder core [J]. J.Magn. Mater. Device, 1995, 26(3): 18
[3] (李晋尧, 何平. 提高Ni-Fe粉芯磁性能的研究 [J]. 磁性材料及器件, 1995, 26(3): 18)
[4] Wei D, Liu S Y, Zhu J G, et al. Prepration of soft magnetic sendust powders and effect of particle size matching on the properties of powder core [J]. J. Magn. Mater. Device, 2014, 45(3): 29
[4] (魏鼎, 刘善宜, 祝家贵等. 铁硅铝粉末制备及配比对磁粉芯性能的影响 [J]. 磁性材料及器件, 2014, 45(3): 29)
[5] Takemoto Satoshi, Saito Takanobu. Effects of crystal grain size and particle size on core loss for Fe-Si compressed cores [J]. Materials Science Forum, 2007, 534-536: 1313
[6] Xu Y C. Study on temperature and pressure of Fe_(78)Si_9B_(13) amorphas soft magnetic powder core [D]. Guangzhou: Guangdong University of Technology, 2015
[6] (徐永春. Fe_(78)Si_9B_(13)非晶软磁磁粉芯温压的研究 [D]. 广州: 广东工业大学, 2015)
[7] Liu H J. Study on particle size proportion of metal soft magnetic powder core [D]. Hefei: University of Technology, 2016
[7] (刘红军. 金属软磁粉芯的粒度配比研究 [D]. 合肥: 合肥工业大学, 2016)
[8] Huang L. Study on preparation process and performagnce of FeSiB magnetic powder core [D]. Guangzhou: South China University of Technology, 2018
[8] (黄垒. FeSiB磁粉芯的制备工艺与性能研究 [D]. 广州: 华南理工大学, 2018)
[9] Li T Y, Ding W T, Geng W B,et al. Influence of soft magnetic powder characteristics on the performance of metallic soft magnetic powder core [J]. Materials Review, 2018, 32(z1): 124
[9] (李天应, 丁文涛, 耿文斌等. 软磁合金粉末特性对金属软磁粉芯的影响 [J]. 材料导报, 2018, 32(z1): 124)
[10] Liu F f, BAKER A P, Weng L Q, et al. Study of phosphate coatings for Fe based soft magnetic composites [J]. Development and Application of Materials, 2007, 22(5): 11
[10] (刘菲菲, BAKER A P, 翁履谦等. 铁粉基软磁复合材料绝缘包覆层的研究 [J]. 材料开发与应用, 2007, 22(5): 11)
[11] Taghvaei A. H, Shokrollahi H, Janghorban K,et al. Eddy current and total power loss separation in the iron-phosphate-polyepoxy soft magnetic composites [J]. Materials & Desigh,2009, 30(10): 3989
[12] Wan J, Zheng Z G, Wang J, et al. Fabrication and soft magnetic of Fe-Si-B amorphous magnetic powder cores [J]. Electronic Components and Materials, 2012, 31(10): 45
[12] (万娟, 郑志刚, 王进等. Fe-Si-B非晶磁粉芯的制备及其软磁性能 [J]. 电子元器件与材料, 2012, 31(10): 45)
[13] Yao L J, Yao Z, Yu W Y. Research on ways reducing magnetic powder core loss [J]. Journal of Shanghai Iron and Steel Research,2005, (3): 55
[13] (姚丽姜, 姚中, 虞维扬. 降低FeSiAl磁粉芯损耗方法研究 [J]. 上海钢研, 2005, (3): 55)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.