Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 299-303    DOI: 10.11901/1005.3093.2019.532
  研究论文 本期目录 | 过刊浏览 |
微乳法制备参数对纳米锡银铜焊粉熔点的影响
俞鑫, 邸彤彤, 沈杭燕()
中国计量大学材料与化学学院 杭州 310018
Synthesis of Nano-SnAgCu Solder by Microemulsion Method
YU Xin, DI Tongtong, SHEN Hangyan()
School of Material and Chemistry, China Jiliang University, Hangzhou 310018, China
引用本文:

俞鑫, 邸彤彤, 沈杭燕. 微乳法制备参数对纳米锡银铜焊粉熔点的影响[J]. 材料研究学报, 2020, 34(4): 299-303.
Xin YU, Tongtong DI, Hangyan SHEN. Synthesis of Nano-SnAgCu Solder by Microemulsion Method[J]. Chinese Journal of Materials Research, 2020, 34(4): 299-303.

全文: PDF(5185 KB)   HTML
摘要: 

用微乳法制备低熔点纳米锡银铜焊粉并揭示其机理,研究了表面活性剂、锡前驱体和微乳液比例对合成的纳米SAC粒子熔点的影响。在最优工艺参数条件下合成的纳米Sn3.0Ag0.5Cu其熔化起始温度为183.6℃,比市售焊锡膏(217.8℃)降低了32.2℃,与传统Sn-Pb焊料的最低熔点183℃接近。

关键词 有色金属及其合金纳米SnAgCu焊粉微乳液法熔点    
Abstract

Nano-SnAgCu solder of low melting point was prepared by means of microemulsion method. The effect of different surfactants, Sn-precursors and the ratio of microemulsion on the melting temperature of the prepared particles of nano-SnAgCu solder was systematically investigated. Results show that the lowest initial melting temparture, 183.6oC was acquired for the particles of nano-SnAgCu solder prepared via the process with optimal processing parameters, namely the prepared Sn3.0Ag0.5Cu solder presents a melting point of 183.6oC, which is close to 183oC of the lowest melting point of SnPb solder, while is c.a. 32.2oC below that of the commercial solder paste (217.8oC).

Key wordsnon-ferrous metals and their alloys    nano SnAgCu solder    microemulsion method    melting temperature
收稿日期: 2019-11-14     
ZTFLH:  TG425  
基金资助:浙江省科技计划(No. 2018C01123)
作者简介: 俞鑫,男,1994年生,硕士
图1  用微乳法合成的纳米SnAgCu的XRD图谱
图2  纳米SnAgCu粒子的TEM照片
图3  用不同微乳反应器合成的粒径尺寸(水相为(0)纯净水;(I)金属前驱体溶液;(Ⅱ)还原剂溶液)
图4  用微乳法合成的不同粒径SnAgCu粒子的TEM照片
SampleParticle size/nmMelting point/℃Remark
Sn3.0Ag0.5Cu22198[3]
Sn-3.8Ag-0.7Cu18187.8[4]
Sn3.0Ag0.5Cu<50200[5]
Sn3.5AgxCu40215[6]
表1  SnAgCu纳米粒子的熔点和粒径结果总结
Sample

mCTAB

/g

mSPAN80

/g

mOP-10

/g

mTritinX114

/g

mIsopropanol

/g

mCyclohexa-ne

/g

mWater

/g

SAC a10---303010
SAC b-10--303010
SAC c--10-303010
SAC d---10303010
表2  不同表面活性剂的合成参数
图5  使用不同表面活性剂合成的SnAgCu的DSC曲线
SamplemC16H30O4Sn/gmSnCl2 /gmSnSO4/gmAgNO3/gmCu(NO3)23H2O/gSurfactant

Proportion of

microemulsion

SAC a6.553--0.110.0363TritonX1141:3:3:1
SAC b-3.610-0.110.0363TritonX1141:3:3:1
SAC c--3.4360.110.0363TritonX1141:3:3:1
表3  不同锡前驱体的合成参数
图6  使用不同的锡前驱体合成的SAC粒子的DSC曲线
SampleMicroemulsion ratioMicroemulsion particle size/nmStarting point/℃Peak melting point/℃
SAC a1:3:3:0.53.12205.7215.3
SAC b1:3:3:1.09.07183.6200.9
SAC c1:3:3:1.515.68205.5214.7
表4  不同微乳液比例的合成参数,微乳反应器粒径与粒子熔点对比
[1] Zhang S S, Zhang Y J, Wang H W. Effect of particle size distributions on the rheology of Sn/Ag/Cu lead-free solder pastes [J]. Mater. Des., 2010, 31(1): 594
[2] Roshanghias A, Khatibi G, Yakymovych A, et al. Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength [J]. J. Electron. Mater., 2016, 45(8): 4390
[3] Jiang H, Moon K S, Wong C P. Recent advances of nanolead-free solder material for low processing temperature interconnect applications [J]. Microelectron. Reliab., 2013, 53(12): 1968
[4] Roshanghias A, Yakymovych A, Bernardi J, et al. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles [J]. Nanoscale, 2015, 7(13): 5843
doi: 10.1039/c5nr00462d pmid: 25757694
[5] Zou C, Gao Y, Yang B, et al. Nanoparticles of Sn3.0Ag0.5Cu alloy synthesized at room temperature with large melting temperature depression [J]. J. Mater. Sci.Mater. Electron., 2012, 23(1): 2
doi: 10.1007/s10856-012-4547-0 pmid: 22271276
[6] Hsiao L Y, Duh J G. Synthesis and characterization of lead-free solders with Sn-3.5Ag-xCu (x=0.2, 0.5, 1.0) alloy nanoparticles by the chemical reduction method [J]. J. Electrochem. Soc., 2005, 152(9): 105
[7] Bumajdad A, Al-Ghareeb S, Madkour M, et al. Synthesis of MgO nanocatalyst in water-in-oil microemulsion for CO oxidation [J]. React. Kinet., Mech. Catal., 2017,122(2): 1213
[8] Mukundan S, Konarova M, Atanda L, et al. Guaiacol hydrodeoxygenation reaction catalyzed by highly dispersed, single layered MoS2/C [J]. Catal. Sci. Technol., 2015, 5(9): 4422
[9] Hernández J, Solla-Gullón J, Herrero E. Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction [J]. J. Electroanal. Chem., 2004, 574(1): 185
[10] Zhang C P, Lei B X, Li Z. Preparation and magnetic properties of nanosize Fe-Co-Ni alloy and composite particles by water-in-oil microemulsions [J]. Nanotech Prec En, 2012, 10(1): 36
[10] (张朝平, 雷炳新, 李振. W/O微乳液法制备Fe-Co-Ni合金和复合物纳米颗粒材料及其磁性能研究 [J]. 纳米技术与精密工程, 2012, 10(1): 36)
[11] Mandal R P, De S. Organized assemblies of AOT determine nano-particle characteristics and their performance as FRET donors [J]. Colloids Surf., A, 2017, 528(5): 10
doi: 10.1016/j.colsurfa.2017.05.038
[1] 陈显明, 潘清林, 范莹莹. Al-Mg-Sc-Ti合金中Al3(Scx,Ti1-x)粒子的析出行为[J]. 材料研究学报, 2020, 34(10): 737-743.
[2] 李明专,胡孝迎,何敏,于杰,鲁圣军. 环氧树脂改性聚乳酸/低熔点尼龙6复合材料的结构和性能[J]. 材料研究学报, 2019, 33(4): 261-270.
[3] 李树丰, 今井久志, 近藤胜义, 张鑫, 潘登, 付亚波. 过饱和固溶合金元素在粉末冶金石墨黄铜中的析出强化[J]. 材料研究学报, 2018, 32(11): 843-852.
[4] 赵媛媛, 章桢彦, 靳丽, 董杰. Cu和Sn对钎焊料4343Al合金组织性能的影响[J]. 材料研究学报, 2016, 30(4): 292-298.
[5] 宗影影,温道胜,邵斌,单德彬. 0.2% H对Ti2AlNb基合金板材高温拉伸变形行为的影响*[J]. 材料研究学报, 2014, 28(4): 248-254.
[6] 梁方 竺培显 周生刚 周亚平 马会宇. 不同媒介金属层的铅/钢层状复合材料的性能*[J]. 材料研究学报, 2013, 27(1): 60-64.