Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (1): 57-63    DOI: 10.11901/1005.3093.2019.348
  研究论文 本期目录 | 过刊浏览 |
光棒废料改性环氧树脂复合材料的制备和性能
石从云1(),王金峰1,陈红祥1,杨旭萌1,杜昌俊1,李光要1,刘鹏1,蔡浩浩2
1. 武汉科技大学化学与化工学院 武汉 430081
2. 武大巨成结构股份有限公司 武汉 430223
Preparation and Properties of Epoxy Resin Composites Incorporated with Optical Fiber Preform Waste
SHI Congyun1(),WANG Jinfeng1,CHEN Hongxiang1,YANG Xumeng1,DU Changjun1,LI Guangyao1,LIU Peng1,CAI Haohao2
1. College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
2. Wuda Jucheng Structure Co. , Ltd, Wuhan 430223, China
引用本文:

石从云,王金峰,陈红祥,杨旭萌,杜昌俊,李光要,刘鹏,蔡浩浩. 光棒废料改性环氧树脂复合材料的制备和性能[J]. 材料研究学报, 2020, 34(1): 57-63.
Congyun SHI, Jinfeng WANG, Hongxiang CHEN, Xumeng YANG, Changjun DU, Guangyao LI, Peng LIU, Haohao CAI. Preparation and Properties of Epoxy Resin Composites Incorporated with Optical Fiber Preform Waste[J]. Chinese Journal of Materials Research, 2020, 34(1): 57-63.

全文: PDF(3169 KB)   HTML
摘要: 

将光棒废料烘干、破碎、煅烧和研磨,分别由KH-570和A-151表面改性制备KH-570/SiO2和A-151/SiO2废料粉末,再把改性前后的粉末分别与EP共混固化制备出复合材料。疏水性测试、FT-IR和SEM观测的结果表明,两种偶联剂对废料颗粒的改性效果较好,其中A-151的改性效果更好。几种复合材料拉伸性能的排序为A-151/SiO2/EP>KH-570/SiO2/EP>未改性粉末/EP,且粉末填充质量分数为20%的材料拉伸性能最优,其拉伸强度分别为49.37 MPa、45.57 MPa、44.36 MPa,比纯EP固化物分别提高了19.9%、10.7%和7.8%,断裂伸长率的提高量最大,比纯EP固化物分别提高了0.92%、0.82%和0.46%。改性效果好的废料粉末填充制备的复合材料,其耐热性能更优。

关键词 复合材料光棒废料硅烷偶联剂环氧树脂拉伸性能热稳定性    
Abstract

The optical fiber preform waste, an industrial by-product, was successively dried, crushed and grinded to produce fine particles, and then which are modified with coupling agents KH-570 and A-151 respectively to prepare KH-570/SiO2 and A-151/SiO2. Further, the prepared two powders were blended respectively with epoxy resin (EP) to prepare EP based composites. The results of hydrophobicity test, FT-IR and SEM show that the two coupling agents present significant modification effect on the waste particles, however the modification effect of A-151 is better. The overall tensile properties of the composites can be ranked as the following order: A-151/SiO2/EP>KH-570/SiO2/EP> unmodified powder/EP, and the tensile properties are the best when the powder mass fraction was 20%. The maximum tensile strength of the above three particles modified EPs is 49.37 MPa, 45.57 MPa, and 44.36 MPa, which are 19.9%, 10.7% and 7.8% higher than that of the plain EP, respectively. Correspondingly the maximum elongations at break of the three composites are 0.92%, 0.82% and 0.46% higher than that of the plain EP, respectively. Besides the composite material prepared by filling the powder with good modification effect show better heat resistance performance.

Key wordscomposite    optical fiber preform waste    silane coupling agent    epoxy resin    tensile properties    thermal stability
收稿日期: 2019-07-15     
ZTFLH:  TB332  
基金资助:长飞光纤光缆股份有限公司光纤光缆制备技术国家重点实验室开放基金(SKLD1501);煤转化与新型碳材料湖北省重点实验室开放基金(WKDM201306)
作者简介: 石从云,男,1970年生,副教授
图1  用粉末压制的粉末片层与纯水的接触角
图2  粉末样品的红外光谱图
图3  不同粉末颗粒的SEM照片
图4  偶联剂KH-570和A-151在废料粉末颗粒表面枝接的示意图
图5  复合材料拉伸强度与粉末含量的关系
图6  硅烷偶联剂提高废料颗粒与EP分子相容性的示意图
图7  复合材料的断裂伸长率与粉末含量的关系
图8  复合材料的TG曲线
CompositeWeight loss rate
5%10%20%50%
Unmodified powder /EP310.2℃337.8℃352.2℃378.2℃
KH-570/SiO2/EP327.1℃341.5℃354.4℃379.6℃
A-151/SiO2/EP329.1℃343.8℃357.2℃383.4℃
表1  复合材料不同失重率下的温度
图9  复合材料的DTG曲线
[1] Cheng P, Wang D Z. Epoxy Resin and Its Application [M]. Beijing: Chemical Industry Press, 2006.
[1] (陈 平, 王德中. 环氧树脂及其应用 [M]. 北京: 化学工业出版社, 2006)
[2] Wu S W, Li Y Y, Chen G R, et al. Epoxy composites modified with POSS-containing block copolymer [J]. Polymer Materials Science and Engineering, 2018, 34(4): 14
[2] (吴顺伟, 李远源, 陈国荣等. POSS嵌段共聚物改性环氧树脂 [J]. 高分子材料科学与工程, 2018, 34(4): 14)
[3] Yang G Q, Guo Y, Wang D Y, et al. Dielectric characteristics of epoxy composites modified with nano ZnO in non-uniform electrical field [J]. High Voltage Engineering, 2017, 43(9): 2825
[3] (杨国清, 郭 玥, 王德意等. 不均匀电场下纳米氧化锌改性环氧树脂的绝缘特性 [J]. 高压电技术, 2017, 43(9): 2825)
[4] Li J W, Wu Z X, Huang C J, et al. Mechanical properties of cyanate ester/epoxy resins reinforced with functionalized multi-wall carbon nanotubes [J]. Chinese Journal of Materials Research, 2014, 28(8): 561
[4] (李静文, 吴智雄, 黄传军等. 多壁碳纳米管改性氰酸酯/环氧树脂基纳米复合材料的力学性能 [J]. 材料研究学报, 2014, 28(8): 561)
[5] Ji G Z, Zhu H Q, Jiang X W, et al. Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders [J]. Journal of Applied Polymer Science,2009, 114: 3168
[6] Chen Y F, Zhang X, Sun J L, et al. Properties of epoxy resin adhesive modified by nano-TiO2 [J]. Journal of Jiangsu University: Natural Science Edition, 2013, 34(3): 335
[6] (陈宇飞, 张 旭, 孙佳林等. 二氧化钛改性环氧树脂胶黏剂的性能 [J]. 江苏大学学报(自然科学版), 2013, 34(3): 335)
[7] Xu C, Qu T G, Zhang X J, et al. Enhanced toughness and thermal conductivity for epoxy resin with a core-shell structured polyacrylic modifier and modified boron nitride. [J]. Royal Society of Chemistry, 2019, 9: 8654
[8] Song D L, Liu S Q, Li F, et al. Effects of silane-modified nano ZrO2 on the corrosion resistance of epoxy coating on the surface of Mg-Li alloy. [J]. Chemical Journal of Chinese Universities, 2017, 38(1): 77
[8] (宋大雷, 刘思齐, 李 丰等. 硅烷改性纳米ZrO2对镁锂合金表面环氧树脂涂层耐蚀性能的影响 [J]. 高等学校化学学报, 2017, 38(1): 77)
[9] Wang Y Y, Wang S Y, Lu G J, et al. Influence of nano-AlN modification on the insulation properties of epoxy resin of dry-type transformers [J]. Transactions of China Electrotechnical Society, 2017, 32(7): 174
[9] (王有元, 王施又, 陆国俊等. 纳米AlN改性对干式变压器环氧树脂绝缘性能的影响 [J]. 电工技术学报, 2017, 32(7): 174)
[10] Song Q C, Zhou Z, Yang C G, et al. Curing kinetics of epoxy resin modified with nano-particles and surface strength properties and friction coefficient [J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 512
[10] (宋起超, 周 真, 杨春光. 纳米改性环氧树脂固化反应及表面与摩擦性能 [J]. 北京航空航天大学学报, 2013, 39(4): 512)
[11] Zhang R L, Liu Y S, Jin Y X. Preparation of EP/ZnO composites with needle nano ZnO and its mechanical properties [J]. Journal of Materials Engineering, 2011, 12: 78
[11] (张荣良, 柳亚输, 金云学. 针状纳米ZnO制备EP/ZnO复合材料及其力学性能的研究 [J]. 材料工程, 2011, 12: 78)
[12] Meng S S, Wang Y, Zhang B M. Preparation and mechanical properties of MWCNTs modified glass fiber [J]. Acta Materiae Compositae Sinica, 2015, 32(4): 989
[12] (孟姗姗, 王 洋, 张博明. 静电植绒法处理多壁碳纳米管改性玻纤织物/环氧树脂复合材料的制备及力学性能 [J]. 复合材料学报, 2015, 32(4): 989)
[13] Gao P Z, Lin M Q, Lin H J, et al. Study on the properties of nano-SiO2 modified epoxy composites [J]. Journal of Hunan University: Natural Science Edition, 2015, 42(6): 1
[13] (高朋召, 林明清, 林海军等. 纳米二氧化硅改性环氧树脂复合材料的性能研究 [J]. 湖南大学学报(自然科学版), 2015, 42(6): 1)
[14] Shi C Y, Ding J K, Wang J F, et al. Research on properties of EVA composites filled with modified optical fiber preform waste powder [J]. Inorganic Chemicals Industry, 2018, 50(10): 58
[14] (石从云, 丁家坤, 王金峰等. 改性的光棒废料粉末填充EVA的复合材料性能研究 [J]. 无机盐工业, 2018, 50(10): 58)
[15] Su X. Effect of coupling agent with different non-hydronlytic groups on performance of modified SiO2/PDMS membrane [D]. Haerbin: Northeast Forestry University, 2017
[15] (苏 醒. 偶联剂非水解基团对改性SiO2/PDMS膜性能影响的研究 [D]. 哈尔滨: 东北林业大学, 2017)
[16] Shan S Y, Cheng P X, Yu X Y, et al. Properties of epoxy resin toughened by adding micro-SiO2 particles [J]. Chinese Journal of Colloid & Polymer, 2016, 34(1): 7
[16] (单书燕, 程品潇, 于晓燕等. 超细二氧化硅微粉增韧改性环氧树脂的研究 [J]. 胶体与聚合物, 2016, 34(1): 7)
[1] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[9] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[10] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[12] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.