Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (10): 776-784    DOI: 10.11901/1005.3093.2019.205
  研究论文 本期目录 | 过刊浏览 |
PEDOTPSS改性锌粉对冷涂锌涂层防护性能的影响
徐龙1,2,刘福春1,2,3(),韩恩厚1,2,3
1. 中国科学院金属研究所 核用材料与安全评价重点实验室 沈阳 110016
2. 中国科学技术大学材料科学与工程学院 合肥 230026
3. 沈阳中科腐蚀控制工程技术中心 沈阳 110016
Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating
XU Long1,2,LIU Fuchun1,2,3(),HAN En-Hou1,2,3
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3. Shenyang Zhongke Engineering Technology Center for Corrosion Control, Shenyang 110016, China
引用本文:

徐龙,刘福春,韩恩厚. PEDOTPSS改性锌粉对冷涂锌涂层防护性能的影响[J]. 材料研究学报, 2019, 33(10): 776-784.
Long XU, Fuchun LIU, En-Hou HAN. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. Chinese Journal of Materials Research, 2019, 33(10): 776-784.

全文: PDF(6410 KB)   HTML
摘要: 

采用聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)对锌粉进行表面改性,在3.5%(质量分数)NaCl溶液中的浸泡试验和扫描电子显微镜分析结果显示改性后锌粉腐蚀减弱,扫描振动电极技术测试(SVET)结果显示腐蚀电流密度下降一个数量级,锌粉的耐蚀性得到提高。通过盐雾试验和电化学阻抗谱测试表征了锌粉改性对涂层防护性能的影响,发现改性后涂层表层锌粉消耗降低,腐蚀产物减少,且涂层的阴极保护作用时间延长20%。PEDOT:PSS提高了涂层表层中锌粉的耐蚀性和强化了涂层内部阴极保护作用。

关键词 材料失效与保护冷涂锌涂层电化学阻抗谱表面改性导电聚合物    
Abstract

Zn particles were surface modified with polystyrene sodium sulfonate doped poly3, 4-ethylene dioxythiophene (PSS-PEDOT). The corrosion performance of the as modified Zn powder was investigated by means of immersion test in 3.5%NaCl (mass fraction) solution and scanning electron microscope, of which the corrosion current density was found one order of magnitude smaller than that of the blank Zn powder. Then, the anticorrosion performance of the coating composed of acrylic resin incorporated with the modified Zn powder was characterized by means of salt spray test and electrochemical impedance spectroscope. It follows that less corrosion of Zn particles on the coating surface was observed and the cathodic protection duration of the coating was prolonged by 20% in contrast with the one incorporated with blank Zn powder. The increased corrosion resistance of Zn particles and enhanced electrical connections that decreased the Zn reactivity was proposed as the possible mechanism of the improved anticorrosion performance of the coating incorporated with modified Zn powder.

Key wordsmaterial failure and protection    cold galvanizing coating    EIS    surface modification    conductive polymer
收稿日期: 2019-04-20     
ZTFLH:  TQ630  
基金资助:沈阳市科技计划(Y17-1-039)
作者简介: 徐 龙,男,1992年生,博士
图1  锌粉后锌粉形貌SEM图和EDS分析
图2  不同锌粉浸泡在3.5% NaCl溶液中5 d后光学照片和SEM照片
图3  未改性和改性锌粉涂层试样在3.5% NaCl 溶液浸泡0.5 h后SVET测试结果
图 4  盐雾试验2000 h后涂层样板表面状态以及涂层表面及截面处SEM观察
图5  涂层试样在3.5%NaCl溶液中腐蚀电位随浸泡时间的变化
图6  未改性和改性涂层试样在3.5% NaCl溶液中不同浸泡时间的Nyquist图和Bode图
图7  拟合所用的等效电路
图8  电化学阻抗谱拟合参数随浸泡时间的变化
[1] Wei Y, Li R L. Progress of zinc-rich coatings [J]. Coat. Technol. Abstr., 2008, 29(6): 6
[1] 魏 勇, 李瑞玲. 富锌涂料的研究进展 [J]. 涂料技术与文摘, 2008, 29(6): 6
[2] Li J G. Application of inorganic zinc-rich coatings [J]. Ant. Insul. Technol., 2005, 14: 22
[2] 李金桂. 无机富锌涂层的诞生和应用 [J]. 防腐保温技术, 2005, 14: 22
[3] Sun H Y, Han Z K, Ren H W, et al. Application of water-borne fluorovesin coatings to steel structure of bridge [J]. Corros. Prot., 2010, 31: 455
[3] 孙红尧, 韩忠奎, 任红伟等. 水性氟树脂涂料在桥梁钢结构上的应用 [J]. 腐蚀与防护, 2010, 31: 455
[4] Bastos A C, Zheludkevich M L, Klüppel I, et al. Modification of zinc powder to improve the corrosion resistance of weldable primers [J]. Prog. Org. Coat., 2010, 69: 184
[5] Marchebois H, Touzain S, Joiret S, et al. Zinc-rich powder coatings corrosion in sea water: influence of conductive pigments [J]. Prog. Org. Coat., 2002, 45: 415
[6] Yang Y, Xiao S B, Che Y C, et al. Application status and development trend of cold sprayed zinc coatings [J]. Electroplat. Finish., 2015, 34: 1293
[6] 杨 焰, 肖邵博, 车轶材等. 冷涂锌涂料的应用现状及发展趋势 [J]. 电镀与涂饰, 2015, 34: 1293
[7] Li M F. Performance and application of cold zinc coating [J]. Electroplat. Finish., 2014, 33: 788
[7] 李敏风. 冷涂锌的性能和应用 [J]. 电镀与涂饰, 2014, 33: 788
[8] Xu L, Liu F C, Wang Z Y, et al. The effect of surface modification of zinc particles with phosphoric acid on the corrosion resistance of cold galvanizing coatings [J]. Prog. Org. Coat., 2018, 114: 90
[9] Park J H, Yun T H, Kim K Y ,et al. The improvement of anticorrosion properties of zinc-rich organic coating by incorporating surface-modified zinc particle [J]. Prog. Org. Coat., 2012, 74: 25
[10] Yun T H, Park J H, Kim J S ,et al. Effect of the surface modification of zinc powders with organosilanes on the corrosion resistance of a zinc pigmented organic coating [J]. Prog. Org. Coat., 2014, 77: 1780
[11] Bastos A C, Zheludkevich M L, Ferreira M G S. A SVET investigation on the modification of zinc dust reactivity [J]. Prog. Org. Coat., 2008, 63: 282
[12] Elschner A, Kirchmeyer S, Lovenich W, et al. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer [M]. Boca Raton: CRC Press, 2010
[13] Zhang G B, Yao B L, Qi J P ,et al. Preparation of secondary doped PEDOT/G-PSA dispersion and its application in waterborne conductive coating [J]. Paint Coat. Ind., 2015, 45(9): 1
[13] 张国标, 姚伯龙, 齐家鹏等. 二次掺杂聚3, 4-乙撑二氧噻吩分散体的制备及其在水性导电涂料中的应用 [J]. 涂料工业, 2015, 45(9): 1
[14] Huang D Q, Huang J, Ha E H ,et al. Preparing carbon nanotubes capsulated with poly(3, 4-ethylenedioxythiophene) by in-situ polymerization [J]. J. Mater. Eng., 2008, (5): 13
[14] 黄大庆, 黄 俊, 哈恩华等. 聚3, 4一乙二氧噻吩包覆碳纳米管的原位化学氧化合成 [J]. 材料工程, 2008, (5): 13
[15] Wu X X, Li F S, Wu W ,et al. Flexible organic light emitting diodes based on double-layered graphene/PEDOT: PSS conductive film [J]. Chin. J. Lumin., 2014, 35: 486
[15] 吴晓晓, 李福山, 吴 薇等. 基于石墨烯/PEDOT:PSS叠层薄膜的柔性OLED器件 [J]. 发光学报, 2014, 35: 486
[16] Yang W Y, Li J, Gao J H ,et al. Preparation and electrochemical properties of PEDOT/AC composites electrodes for supercapacitors [J]. J. Funct. Mater., 2017, 48: 2005
[16] 杨文耀, 李 杰, 高君华等. 超级电容器用PEDOT/AC复合电极的制备及电化学性能 [J]. 功能材料, 2017, 48: 2005
[17] Chen J, Hu Z R, Zheng X C ,et al. Research progress on modification of highly conductive PEDOT/PSS composites [J]. Eng. Plast. Appl., 2018, 46(8): 138
[17] 陈 杰, 胡章润, 郑显才等. 高导电PEDOT/PSS复合材料改性研究进展 [J]. 工程塑料应用, 2018, 46(8): 138
[18] Wu X, Zhao Q, Huang Y F ,et al. Effects of PSS doping on the electrochemical properties of poly (3, 4-ethylenedioxythiophene) [J]. Electron. Comp. Mater., 2013, 32(6): 42
[18] 吴 頠, 赵 强, 黄艺芬等. PSS掺杂对PEDOT电化学性能的影响 [J]. 电子元件与材料, 2013, 32(6): 42
[19] Abreu C M, Izquierdo M, Merino P ,et al. A New approach to the determination of the cathodic protection period in zinc-rich paints [J]. Corrosion, 1999, 55: 1173
[20] Xie D M, Hu J M, Tong S P ,et al. The development of zinc-rich paints [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 314
[20] 谢德明, 胡吉明, 童少平等. 富锌漆研究进展 [J]. 中国腐蚀与防护学报, 2004, 24: 314
[21] Abreu C M, Izquierdo M, Keddam M ,et al. Electrochemical behaviour of zinc-rich epoxy paints in 3% NaCl solution [J]. Electrochim. Acta, 1996, 41: 2405
[22] Abreu C, Espada L, Izquierdo M ,et al. Factors affecting the electrochemical behaviour of zinc-rich epoxy paints [A]. Organic and Inorganic Coatings for Corrosion Prevention-Research and Experiences: (EFC20) [C]. Maney Publishing, 1997: 23
[23] Ferreira M G S, Duarte R G, Montemor M F ,et al. Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel [J]. Electrochim. Acta, 2004, 49: 2927
[24] Zuo Y, Pang R, Li W ,et al. The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS [J]. Corros. Sci., 2008, 50: 3322
[25] Amirudin A, Thieny D. Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals [J]. Prog. Org. Coat., 1995, 26: 1
[26] Uzoma P C, Liu F C, Xu L ,et al. Superhydrophobicity, conductivity and anticorrosion of robust siloxane-acrylic coatings modified with graphene nanosheets [J]. Prog. Org. Coat., 2019, 127: 239
[27] Chen H B, Zheng J W, Qiao L ,et al. Surface modification of NdFe12Nx magnetic powder using silane coupling agent KH550 [J]. Adv. Powder Technol., 2015, 26: 618
[1] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[7] 陈怿咨, 张承双, 陈平. 用常压空气等离子体对PBO纤维表面接枝改性[J]. 材料研究学报, 2021, 35(9): 641-650.
[8] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[10] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[11] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[12] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[13] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[14] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[15] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.