Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (7): 515-522    DOI: 10.11901/1005.3093.2018.588
  研究论文 本期目录 | 过刊浏览 |
Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能
陈子尚1,梁小平1(),樊小伟1,王军1,黄安定1,刘志锋2()
1. 分离膜与膜过程国家重点实验室 天津工业大学材料科学与工程学院 天津 300387
2. 天津城建大学材料科学与工程学院 天津 300384
Fabrication and Photocatalytic Properties of Ce-La-Ag Co-doped TiO2/Basalt Fiber Composite Photocatalyst
Zishang CHEN1,Xiaoping LIANG1(),Xiaowei FAN1,Jun WANG1,Anding HUANG1,Zhifeng LIU2()
1. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
2. School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China
引用本文:

陈子尚,梁小平,樊小伟,王军,黄安定,刘志锋. Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能[J]. 材料研究学报, 2019, 33(7): 515-522.
Zishang CHEN, Xiaoping LIANG, Xiaowei FAN, Jun WANG, Anding HUANG, Zhifeng LIU. Fabrication and Photocatalytic Properties of Ce-La-Ag Co-doped TiO2/Basalt Fiber Composite Photocatalyst[J]. Chinese Journal of Materials Research, 2019, 33(7): 515-522.

全文: PDF(8766 KB)   HTML
摘要: 

以玄武岩纤维(BF)为载体,用溶胶凝胶法将Ce-La-Ag共掺TiO2负载于BF上制备出Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂。用光催化降解氨氮废水,研究了烧结温度和废水的pH值对Ce-La-Ag-TiO2/BF光催化活性的影响。结果表明:Ce-La离子与纳米Ag颗粒的协同作用使TiO2的禁带宽度由3.2 eV降至2.15 eV。Ce-La-Ag-TiO2的光催化活性优于纯TiO2、Ag-TiO2和Ce-La-TiO2,负载到BF使其光催化活性进一步提高。当复合光催化剂的烧结温度为600 ℃、氨氮废水的pH值为10.5、模拟可见光的照射时间为360 min时,Ce-La-Ag-TiO2/BF对氨氮废水重复降解5次的降解率仍高于88.2%。

关键词 无机非金属材料TiO2复合光催化剂稀土-贵金属共掺玄武岩纤维氨氮废水降解    
Abstract

The composite photocatalyst of Ce-La-Ag-TiO2/BF (basalt fiber) was prepared by coating the Ce-La-Ag co-doped TiO2 onto BF via sol-gel method. The effect of the calcination temperature of the composite photocatalyst and the pH value of wastewater on the photocatalytic activity of these photocatalysts was evaluated by examining the degradation rate of ammonia-nitrogen wastewater. The results show that the coupling effect of Ce-La ion and Ag nanoparticles results in the decreases of the band gap of TiO2 from 3.2 eV to 2.15 eV, with a photocatalytic activity obviously higher than those of the pure TiO2, Ce-La-TiO2 and Ag-TiO2. Moreover, the catalytic activity of Ce-La-Ag-TiO2 is further improved after being deposited onto BF. When the calcination temperature for the Ce-La-Ag-TiO2, pH of wastewater and irradiating time of simulate visible light are 600oC, 10.5 and 360 min, respectively, the resulted degradation rate of ammonia nitrogen wastewater can still reach above 88.2% after repeated use of the composite photocatalyst for five times.

Key wordsInorganic non-metallic materials    TiO2 composite photocatalyst    rare earth and noble metal co-doped    basalt fiber    ammonia nitrogen wastewater degradation
收稿日期: 2018-09-27     
ZTFLH:  O643.36  
基金资助:国家教育部“创新团队发展计划”(IRT-17R80);天津市杰出青年基金(17JCJQJC44800)
作者简介: 陈子尚,男,1993年生,硕士
图1  光催化剂的XRD谱图
图2  Ce-La-Ag-TiO2的X射线电子能谱图
图3  光催化剂的紫外可见吸收光谱和禁带宽度
图4  光催化剂的氨氮降解效果
图5  基体和光催化剂的SEM和TEM照片
图6  不同烧结温度和不同废水pH值时Ce-La-Ag-TiO2/BF的氨氮降解浓度曲线
图7  Ce-La-Ag-TiO2/BF重复使用次数对光催化降解氨氮效果的影响
图8  催化剂的瞬时光电流响应效果
图9  催化剂的交流阻抗图谱
图10  Ce-La-Ag-TiO2/BF光催化降解氨氮的反应机理
图11  在光催化反应过程中含氮物的浓度曲线
[1] Zangeneh H, Zinatizadeh A A L, Habibi M, et al. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review [J]. J. Ind. Eng. Chem., 2015, 26: 1
[2] Wang L J, Wang W Z, Chen Y L, et al. Heterogeneous p-n Junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution [J]. ACS Appl. Mater. Interfaces, 2018, 10: 11652
[3] Vaquero F, Navarro R M, Fierro J L G. Influence of the solvent on the structure, morphology and performance for H2 evolution of cds photocatalysts prepared by solvothermal method [J]. Appl. Catal., 2017, 203B: 753
[4] Chen Y L, Wang L J, Wang W Z, et al. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method [J]. Appl. Catal., 2017, 209B: 110
[5] Chen Y L, Wang L J, Wang W Z, et al. Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties [J]. Mater. Chem. Phys., 2017, 199: 416
[6] Wang L J, Wang W Z, Zhang W W, et al. Superior photoelectrochemical properties of BiVO4 nanofilms enhanced by PbS quantum dots decoration [J]. Appl. Surf. Sci., 2018, 427: 553
[7] Pan J H, Dou H Q, Xiong Z G, et al. Porous photocatalysts for advanced water purifications [J]. J. Mate. Chem., 2010, 20: 4512
[8] Fujishima A, Zhang X T, Tryk D A. Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup [J]. Int. J. Hydrogen Energy, 2007, 32: 2664
[9] Luo X P, Chen C F, Yang J, et al. Characterization of La/Fe/TiO2 and its photocatalytic performance in ammonia nitrogen wastewater [J]. Int. J. Environ. Res. Public Health, 2015, 12: 14626
[10] Zhang X J, Chen W B, Lin Z D, et al. Preparation and photocatalysis performances of bacterial cellulose/TiO2 composite membranes doped by rare earth elements [J]. Chin. J. Mater. Res., 2010, 24: 540
[10] (张秀菊, 陈文彬, 林志丹等. 细菌纤维素负载稀土掺杂二氧化钛复合膜的制备和光催化性能 [J]. 材料研究学报, 2010, 24: 540)
[11] Chen H Y, He F, Zhang X H, et al. Photocatalytic reduction properties of palladium and nitrogen co-doped TiO2 thin films [J]. Chin. J. Mater. Res., 2017, 31: 255
[11] (陈海洋, 何菲, 张旭海等. 钯氮共掺杂TiO2薄膜的光催化还原性能 [J]. 材料研究学报, 2017, 31: 255)
[12] Wang F L, Wang Y F, Feng Y P, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen [J]. Appl. Catal., 2018, 221B: 510
[13] Zhang N, Fu X Z, Xu Y J. A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst [J]. J. Mater. Chem., 2011, 21: 8152
[14] Li D D, Liu Z Q, Liu X, et al. Silver doped TiO2 nanotube arrays: preparation and photoelectric catalysis degradation of ammonia nitrogen wastewater [J]. Chin. J. Inorg. Chem., 2012, 28: 1343
[14] (李丹丹, 刘中清, 刘旭等. Ag掺杂TiO2纳米管阵列的制备及光电催化降解氨氮废水 [J]. 无机化学学报, 2012, 28: 1343)
[15] Sun D C, Sun W Z, Yang W Y, et al. Efficient photocatalytic removal of aqueous NH4+-NH3 by palladium-modified nitrogen-doped titanium oxide nanoparticles under visible light illumination, even in weak alkaline solutions [J]. Chem. Eng. J., 2015, 264: 728
[16] Zendehzaban M, Sharifnia S, Hosseini S N. Photocatalytic degradation of ammonia by light expanded clay aggregate (LECA)-coating of TiO2 nanoparticles [J]. Korean J. Chem. Eng., 2013, 30: 574
[17] Shavisi Y, Sharifnia S, Hosseini S N, et al. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater [J]. J. Ind. Eng. Chem., 2014, 20: 278
[18] Sim J, Park C, Moon D Y. Characteristics of basalt fiber as a strengthening material for concrete structures [J]. Composites, 2005, 36B: 504
[19] Liu Q, Shaw M T, Parnas R S, et al. Investigation of basalt fiber composite aging behavior for applications in transportation [J]. Polym. Compos., 2006, 27: 475
[20] Wu R H. The application of basalt fiber in building materials [J]. Adv. Mater. Res., 2012, 450-451: 499
[21] Zhang W, Tang W Y, Pu Y C, et al. Ultimate strength analysis of ship hulls of continuous basalt fiber composite materials [J]. Adv. Mater. Res., 2011, 150-151: 736
[22] Stephens M A, Petersen E L, Carro R, et al. Multi‐parameter study of nanoscale TiO2 and CeO2 additives in composite AP/HTPB solid propellants [J]. Propell. Explos. Pyrot., 2010, 35: 143
[23] Yuan S, Sheng Q R, Zhang J L, et al. Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity [J]. Microporous Mesoporous Mater., 2008, 110: 501
[24] Sibu C P, Kumar S R, Mukundan P, et al. Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide [J]. Chem. Mater., 2002, 14: 2876
[25] Khatun N, Rini E G, Shirage P, et al. Effect of lattice distortion on bandgap decrement due to vanadium substitution in TiO2 nanoparticles [J]. Mater. Sci. Semicond. Process., 2016, 50: 7
[26] Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag [J]. Chem. Mater., 2008, 20: 6543
[27] Wang H L, Liu X H. Preparation of silver nanoparticle loaded mesoporous TiO2 and its photocatalytic property [J]. J. Inorg. Mater., 2016, 31: 555
[27] (王慧蕾, 刘孝恒. 银粒子修饰下的介孔二氧化钛的制备及其光催化性能的研究 [J]. 无机材料学报, 2016, 31: 555
[28] Chang J L, Ma Q L, Ma J C, et al. Synthesis of Fe3O4 nanowire@CeO2/Ag nanocomposites with enhanced photocatalytic activity under sunlight exposure [J]. Ceram. Int., 2016, 42: 11827
[29] Anandan S, Ikuma Y, Murugesan V. Highly active rare-earth-metal La-doped photocatalysts: fabrication, characterization, and their photocatalytic activity [J]. Int. J. Photoenergy, 2012, 2012: 921412
[30] Liu D D, Wu Z S, Tian F, et al. Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene [J]. J. Alloys Compd., 2016, 676: 489
[31] Liang Y H, Lin S L, Liu L, et al. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation [J]. Appl. Catal., 2015, 164B: 192
[32] Pandian A, Vairavan M, Jebbas W J, et al. Effect of moisture absorption behavior on mechanical properties of basalt fibre reinforced polymer matrix composites [J]. J. Compos., 2014, 2014: 587980
[33] Cheng J Y, Chen J, Lin W, et al. Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size [J]. Appl. Surf. Sci., 2015, 332: 573
[34] Yu L Q, He J D, Huang C X, et al. Electron transportation path build for superior photoelectrochemical performance of Ag3PO4/TiO2 [J]. RSC Adv., 2017, 7: 54485
[35] Wang J, Liang X P, Chen P, et al. Microstructure and photocatalytic properties of Ag/Ce4+/La3+ co-modified TiO2/Basalt fiber for ammonia-nitrogen removal from synthetic wastewater [J]. J. Sol-Gel Sci. Technol., 2016, 82: 289
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.