|
|
Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能 |
陈子尚1,梁小平1( ),樊小伟1,王军1,黄安定1,刘志锋2( ) |
1. 分离膜与膜过程国家重点实验室 天津工业大学材料科学与工程学院 天津 300387 2. 天津城建大学材料科学与工程学院 天津 300384 |
|
Fabrication and Photocatalytic Properties of Ce-La-Ag Co-doped TiO2/Basalt Fiber Composite Photocatalyst |
Zishang CHEN1,Xiaoping LIANG1( ),Xiaowei FAN1,Jun WANG1,Anding HUANG1,Zhifeng LIU2( ) |
1. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China 2. School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China |
引用本文:
陈子尚,梁小平,樊小伟,王军,黄安定,刘志锋. Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能[J]. 材料研究学报, 2019, 33(7): 515-522.
Zishang CHEN,
Xiaoping LIANG,
Xiaowei FAN,
Jun WANG,
Anding HUANG,
Zhifeng LIU.
Fabrication and Photocatalytic Properties of Ce-La-Ag Co-doped TiO2/Basalt Fiber Composite Photocatalyst[J]. Chinese Journal of Materials Research, 2019, 33(7): 515-522.
[1] | Zangeneh H, Zinatizadeh A A L, Habibi M, et al. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review [J]. J. Ind. Eng. Chem., 2015, 26: 1 | [2] | Wang L J, Wang W Z, Chen Y L, et al. Heterogeneous p-n Junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution [J]. ACS Appl. Mater. Interfaces, 2018, 10: 11652 | [3] | Vaquero F, Navarro R M, Fierro J L G. Influence of the solvent on the structure, morphology and performance for H2 evolution of cds photocatalysts prepared by solvothermal method [J]. Appl. Catal., 2017, 203B: 753 | [4] | Chen Y L, Wang L J, Wang W Z, et al. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method [J]. Appl. Catal., 2017, 209B: 110 | [5] | Chen Y L, Wang L J, Wang W Z, et al. Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties [J]. Mater. Chem. Phys., 2017, 199: 416 | [6] | Wang L J, Wang W Z, Zhang W W, et al. Superior photoelectrochemical properties of BiVO4 nanofilms enhanced by PbS quantum dots decoration [J]. Appl. Surf. Sci., 2018, 427: 553 | [7] | Pan J H, Dou H Q, Xiong Z G, et al. Porous photocatalysts for advanced water purifications [J]. J. Mate. Chem., 2010, 20: 4512 | [8] | Fujishima A, Zhang X T, Tryk D A. Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup [J]. Int. J. Hydrogen Energy, 2007, 32: 2664 | [9] | Luo X P, Chen C F, Yang J, et al. Characterization of La/Fe/TiO2 and its photocatalytic performance in ammonia nitrogen wastewater [J]. Int. J. Environ. Res. Public Health, 2015, 12: 14626 | [10] | Zhang X J, Chen W B, Lin Z D, et al. Preparation and photocatalysis performances of bacterial cellulose/TiO2 composite membranes doped by rare earth elements [J]. Chin. J. Mater. Res., 2010, 24: 540 | [10] | (张秀菊, 陈文彬, 林志丹等. 细菌纤维素负载稀土掺杂二氧化钛复合膜的制备和光催化性能 [J]. 材料研究学报, 2010, 24: 540) | [11] | Chen H Y, He F, Zhang X H, et al. Photocatalytic reduction properties of palladium and nitrogen co-doped TiO2 thin films [J]. Chin. J. Mater. Res., 2017, 31: 255 | [11] | (陈海洋, 何菲, 张旭海等. 钯氮共掺杂TiO2薄膜的光催化还原性能 [J]. 材料研究学报, 2017, 31: 255) | [12] | Wang F L, Wang Y F, Feng Y P, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen [J]. Appl. Catal., 2018, 221B: 510 | [13] | Zhang N, Fu X Z, Xu Y J. A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst [J]. J. Mater. Chem., 2011, 21: 8152 | [14] | Li D D, Liu Z Q, Liu X, et al. Silver doped TiO2 nanotube arrays: preparation and photoelectric catalysis degradation of ammonia nitrogen wastewater [J]. Chin. J. Inorg. Chem., 2012, 28: 1343 | [14] | (李丹丹, 刘中清, 刘旭等. Ag掺杂TiO2纳米管阵列的制备及光电催化降解氨氮废水 [J]. 无机化学学报, 2012, 28: 1343) | [15] | Sun D C, Sun W Z, Yang W Y, et al. Efficient photocatalytic removal of aqueous NH4+-NH3 by palladium-modified nitrogen-doped titanium oxide nanoparticles under visible light illumination, even in weak alkaline solutions [J]. Chem. Eng. J., 2015, 264: 728 | [16] | Zendehzaban M, Sharifnia S, Hosseini S N. Photocatalytic degradation of ammonia by light expanded clay aggregate (LECA)-coating of TiO2 nanoparticles [J]. Korean J. Chem. Eng., 2013, 30: 574 | [17] | Shavisi Y, Sharifnia S, Hosseini S N, et al. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater [J]. J. Ind. Eng. Chem., 2014, 20: 278 | [18] | Sim J, Park C, Moon D Y. Characteristics of basalt fiber as a strengthening material for concrete structures [J]. Composites, 2005, 36B: 504 | [19] | Liu Q, Shaw M T, Parnas R S, et al. Investigation of basalt fiber composite aging behavior for applications in transportation [J]. Polym. Compos., 2006, 27: 475 | [20] | Wu R H. The application of basalt fiber in building materials [J]. Adv. Mater. Res., 2012, 450-451: 499 | [21] | Zhang W, Tang W Y, Pu Y C, et al. Ultimate strength analysis of ship hulls of continuous basalt fiber composite materials [J]. Adv. Mater. Res., 2011, 150-151: 736 | [22] | Stephens M A, Petersen E L, Carro R, et al. Multi‐parameter study of nanoscale TiO2 and CeO2 additives in composite AP/HTPB solid propellants [J]. Propell. Explos. Pyrot., 2010, 35: 143 | [23] | Yuan S, Sheng Q R, Zhang J L, et al. Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity [J]. Microporous Mesoporous Mater., 2008, 110: 501 | [24] | Sibu C P, Kumar S R, Mukundan P, et al. Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide [J]. Chem. Mater., 2002, 14: 2876 | [25] | Khatun N, Rini E G, Shirage P, et al. Effect of lattice distortion on bandgap decrement due to vanadium substitution in TiO2 nanoparticles [J]. Mater. Sci. Semicond. Process., 2016, 50: 7 | [26] | Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag [J]. Chem. Mater., 2008, 20: 6543 | [27] | Wang H L, Liu X H. Preparation of silver nanoparticle loaded mesoporous TiO2 and its photocatalytic property [J]. J. Inorg. Mater., 2016, 31: 555 | [27] | (王慧蕾, 刘孝恒. 银粒子修饰下的介孔二氧化钛的制备及其光催化性能的研究 [J]. 无机材料学报, 2016, 31: 555 | [28] | Chang J L, Ma Q L, Ma J C, et al. Synthesis of Fe3O4 nanowire@CeO2/Ag nanocomposites with enhanced photocatalytic activity under sunlight exposure [J]. Ceram. Int., 2016, 42: 11827 | [29] | Anandan S, Ikuma Y, Murugesan V. Highly active rare-earth-metal La-doped photocatalysts: fabrication, characterization, and their photocatalytic activity [J]. Int. J. Photoenergy, 2012, 2012: 921412 | [30] | Liu D D, Wu Z S, Tian F, et al. Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene [J]. J. Alloys Compd., 2016, 676: 489 | [31] | Liang Y H, Lin S L, Liu L, et al. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation [J]. Appl. Catal., 2015, 164B: 192 | [32] | Pandian A, Vairavan M, Jebbas W J, et al. Effect of moisture absorption behavior on mechanical properties of basalt fibre reinforced polymer matrix composites [J]. J. Compos., 2014, 2014: 587980 | [33] | Cheng J Y, Chen J, Lin W, et al. Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size [J]. Appl. Surf. Sci., 2015, 332: 573 | [34] | Yu L Q, He J D, Huang C X, et al. Electron transportation path build for superior photoelectrochemical performance of Ag3PO4/TiO2 [J]. RSC Adv., 2017, 7: 54485 | [35] | Wang J, Liang X P, Chen P, et al. Microstructure and photocatalytic properties of Ag/Ce4+/La3+ co-modified TiO2/Basalt fiber for ammonia-nitrogen removal from synthetic wastewater [J]. J. Sol-Gel Sci. Technol., 2016, 82: 289 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|