|
|
功能化石墨烯/埃洛石纳米管对聚丙烯的协同强韧化改性研究 |
王正君1,刘虹财1,郭怡1,卞军1( ),李建保1,蔺海兰1( ),鲁云2 |
1. 西华大学材料科学与工程学院 成都 610039 2. 千叶大学科学与工程研究院 机械工程系 千叶 262-8522 日本 |
|
Synergistic Strengthening-Toughening Modification of Polypropylene with Functional Graphene/Halloysite Nanotubes |
Zhengjun WANG1,Hongcai LIU1,Yi GUO1,Jun BIAN1( ),Jianbao LI1,Hailan LIN1( ),Yun LU2 |
1. College of Materials Science and Engineering, Xihua University, Chengdu 610039, China 2. Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba 262-8522, Japan |
引用本文:
王正君,刘虹财,郭怡,卞军,李建保,蔺海兰,鲁云. 功能化石墨烯/埃洛石纳米管对聚丙烯的协同强韧化改性研究[J]. 材料研究学报, 2019, 33(7): 505-514.
Zhengjun WANG,
Hongcai LIU,
Yi GUO,
Jun BIAN,
Jianbao LI,
Hailan LIN,
Yun LU.
Synergistic Strengthening-Toughening Modification of Polypropylene with Functional Graphene/Halloysite Nanotubes[J]. Chinese Journal of Materials Research, 2019, 33(7): 505-514.
[1] | Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater., 2007, 6(3): 183 | [2] | Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature, 2006, 442, 282 | [3] | He X L, Yu Y F, Chen Q, et al. Recent advances in graphene based composite materials [J]. Mater. Rev., 2013, 27(7100): 22 | [4] | Kuilla T, Bhadra S, Yao D H, et al. Recent advances in graphene based polymer composites [J]. Prog. Polym. Sci., 2010, 35(11): 1350 | [5] | Huang X. Graphene-based composites [J]. Chem.Soc. Rev., 2012, 41(2): 666 | [6] | Sengupta R, Bhattacharya M, Band-yopadhyay S, et al. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites [J]. Prog. Polym. Sci., 2011, 36(5): 638 | [7] | Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites [J]. Nat. Nanotechnol., 2008, 3(6): 327 | [8] | Lonkar S P, Deshmukh Y S, Abdala A A. Recent advances in chemical modifications of graphene [J]. Nano. Res., 2015, 8(4): 1039 | [9] | Young S Y, Yo H B, Do H K, et al. Reinforcing effects of adding alkylated graphene oxide to polypropylene [J]. Carbon, 2011, 49(11): 3553 | [10] | Cao Y W, Zhang J, Feng J C, et al. Compatibilization of immiscible polymer blends using graphene oxide sheets [J]. ACS. Nano., 2011, 5(7): 5920 | [11] | Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide [J]. Chem. Soc. Rev., 2010, 39(1): 228 | [12] | Lin Y, Jin J, Song M. Preparation and characterisation of covalent polymer functionalized graphene oxide [J]. J. Mater. Chem., 2011, 21(10): 3455 | [13] | Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets [J]. Carbon, 2006, 44(15): 3342 | [14] | Xu C, Wu X, Zhu J, et al. Synthesis of amphiphilic graphite oxide [J]. Carbon, 2008, 46(2): 386 | [15] | Bian J, Wei X W, Lin H L, et al. Preparation and characterization of modified graphite oxide/poly (propylene carbonate) composites by solution intercalation [J]. Polym. Degrad. Stabil., 2011, 96(10): 1833 | [16] | Bian J, Lin H L, He F X, et al. A facile approach to selective reduction and functionalization of graphene oxide and its application in fabrication of multifunctional polypropylene nanocomposites [J]. Polym. Compos., 2015, 7(2): 131 | [17] | Bian J, Wang Z J, Lin H L, et al. Thermal and mechanical properties of polypropylene nanocomposites reinforced with nano-SiO2 functionalized graphene oxide [J]. Compos. Part A, 2017, 97: 120 | [18] | Bian J, Wang G, Lin H L, et al. HDPE composites strengthened-toughened synergistically by L-aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials [J]. J. Appl. Polym. Sci., 2017, 134(29). DOI: 10.1002/APP.45055 | [19] | Kavitha T, Gopalan A I, Lee K P, et al. Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids [J]. Carbon, 2012, 50(8): 2994 | [20] | Bell N J, Yun H N , Du A J, et al. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared tio2-reduced graphene oxide composite [J]. J. Phys. Chem. C., 2011, 115(13): 6004 | [21] | Song J, Xu L, Zhou C Y, et al. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection [J]. ACS. Appl. Mater. & Inter., 2013, 5(24): 12928 | [22] | Haldorai Y, Kim B K, Jo Y L, et al. Ag@graphene oxide nanocomposite as an efficient visible-light plasmonic photocatalyst for the degradation of organic pollutants: A facile green synthetic approach [J]. Mater. Chem. & Phys., 2014, 143(3): 1452 | [23] | Jiang T, Kuila T, Kim N H, et al. Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites [J]. Compos. Sci. Technol., 2013, 79: 115 | [24] | Hsiao M C, Ma C C M, Chiang J C, et al. Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide-silica hybrid nanosheets [J]. Nanoscale, 2013, 5(13): 5863 | [25] | Kou L, Gao C. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings [J]. Nanoscale, 2011, 3(2): 519 | [26] | Yang S Y, Lin W N, Huang Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites [J]. Carbon, 2011, 49(3): 793 | [27] | Yan J, Wei T, Fan Z, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors [J]. J. Power Sources, 2010, 195(9): 3041 | [28] | Fan Z, Yan J, Zhi L, et al. A Three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors [J]. Adv. Mater., 2010, 22(33): 3723 | [29] | Lee J, Kim Y K, Min D H. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films [J]. J. Am. Chem. Soc., 2010, 132(42): 14714 | [30] | Yang S Y, Chang K H, Lee Y F, et al. Constructing a hierarchical graphene-carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters [J]. Electrochem. Commun., 2010, 12(9): 1206 | [31] | Tung V C, Chen L M, Allen M J, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors [J]. Nano. Lett., 2009, 9(5): 1949 | [32] | Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano. Lett., 2008, 8(8): 2277 | [33] | Wu W,Wu P J,He D,et al. Application progress of halloysite nanotube in polymer nanocomposites [J]. Chem. Indus. Eng. Prog., 2011, 30(12): 2647 | [33] | (伍巍, 吴鹏君, 何 丁等. 长链硅烷对埃洛石纳米管的表面改性研究 [J]. 化工进展, 2011, 30(12): 2647) | [34] | Jia Z, Guo B, Jia D. Advances in rubber/halloysite nanotubes nanocomposites [J]. J. Nanosci. Nanotechno., 2014, 14(2): 1758 | [35] | Yu L, Wang H X, Zhang Y T, et al. Recent advances in halloysite nanotube derived composites for water treatment [J]. Environ. Sci: Nano., 2016, 3(1): 28 | [36] | Ravindra K, Manasi G, Sheetal G, et al. Halloysite nanotubes and applications: a review [J]. J. Adv. Sci. Res., 2012, 3(2): 25 | [37] | Swapna V P, Selvin T P, Suresh K I, et al. Thermal properties of poly (vinyl alcohol)(PVA)/halloysite nanotubes reinforced nanocomposites [J]. Int. J. Plas. Technol., 2015, 19(1): 124 | [38] | Long G B, Trinh D N, Nguyen T T. Grafting of poly (poly (ethylene glycol) methacrylate) onto halloysite nanotubes via surface-initiated atom transfer radical polymerization [J]. J. Nanosci. Nanotechnol., 2019, 19(2): 927 | [39] | Zhan Y Q, He S J, Wan X Y. Thermally and chemically stable poly(arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment [J]. J. Membrane.Sci., 2018, 567: 76 | [40] | Gaaz T S, Sulong A B, Akhtar M N, et al. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites [J]. Molecules. 2015, 20(12): 22833 | [41] | Bian J, Wei X W, Lin H L, et al. Comparative study on the exfoliated expanded graphite nanosheet-PES composites prepared via different compounding method [J]. J. Appl. Polym. Sci., 2012; 12(5): 3247 | [42] | Wang W Z, Liu T X. Mechanical properties and morphologies of polypropylene composites synergistically filled by styrene-butadiene rubber and silica nanoparticles [J]. J. Appl. Polym. Sci., 2008, 109, 1654 | [43] | Chen W, Wu S, Lei Y, et al. Interfacial structure and performance of rubber/boehmite nanocomposites modified by methacrylic acid [J]. Polymer, 2011, 52(19): 4387 | [44] | Ferrari A C, Robertson J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon [J]. Phys. Rev. B., 2000, 61: 14095 | [45] | Tuinstra F, Koenig J. L. Raman spectrum of graphite [J]. J. Chem.Phys., 1970, 53: 1126 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|