Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (4): 261-270    DOI: 10.11901/1005.3093.2018.533
  本期目录 | 过刊浏览 |
环氧树脂改性聚乳酸/低熔点尼龙6复合材料的结构和性能
李明专1,2,胡孝迎1,2,何敏1,2,于杰2,鲁圣军1,2()
1. 贵州大学材料与冶金学院 贵阳 550025
2. 国家复合改性聚合物材料工程技术研究中心 贵阳 550014
Structure and Properties of Epoxy Modified PLA/Low Melting Point PA6 Composites
Mingzhuan LI1,2,Xiaoying HU1,2,Min HE1,2,Jie YU2,Shengjun LU1,2()
1. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2. National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China
引用本文:

李明专,胡孝迎,何敏,于杰,鲁圣军. 环氧树脂改性聚乳酸/低熔点尼龙6复合材料的结构和性能[J]. 材料研究学报, 2019, 33(4): 261-270.
Mingzhuan LI, Xiaoying HU, Min HE, Jie YU, Shengjun LU. Structure and Properties of Epoxy Modified PLA/Low Melting Point PA6 Composites[J]. Chinese Journal of Materials Research, 2019, 33(4): 261-270.

全文: PDF(8042 KB)   HTML
摘要: 

用“熔融挤出-热拉伸-淬冷”法制备环氧树脂改性聚乳酸(ePLA)/低熔点尼龙6(LMPA6)复合材料,使用差示扫描量热法(DSC)、X射线衍射(XRD)、热重分析(TGA)、流变仪和电子拉伸机等手段研究了具有不同LMPA6含量的ePLA/LMPA6复合材料的结晶行为、热性能、流变性能以及力学性能。DSC结果表明,LMPA6的加入改变了PLA的晶体结构,显著改变了复合材料体系的冷结晶温度、冷结晶熔融温度。热重分析(TGA)结果表明,LMPA6的加入提高了ePLA/LMPA6复合材料的热稳定性。动态力学性能结果表明,LMPA6的加入提高了ePLA/LMPA6复合材料的玻璃化转变温度(Tg)。流变学测试结果表明,应变(γ)超过临界应变(γC)后储能模量(G')呈非线性下降,出现“Payne”效应。这种复合材料表现出非牛顿流体的特性—“剪切变稀”行为,而且随着LMPA6含量的提高体系的“剪切变稀”行为更加明显。根据扫描电镜照片,在LMPA6含量为7%的体系中出现微纤结构,使其相容性最好。LMPA6的加入在一定程度上提高了复合材料的强度和韧性,特别是LMPA6含量为7%的复合材料其拉伸强度(72.8MPa)和冲击强度(5.0 kJ/m2)达到极值,比改性聚乳酸(65.7 MPa,2.8 kJ/m2)分别提高了10.8%和78.6%。

关键词 复合材料聚乳酸环氧树脂低熔点尼龙6流变行为增韧    
Abstract

Composites of epoxy resin modified polylactic acid (ePLA)/low melting point nylon 6 (LMPA6) were prepared via method of “melting extrusion—hot stretching—quenching”. The crystallization behavior, thermal, rheological and mechanical properties of the composites were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analysis (TGA), rheometer and electronical stretching machine. Results show that the addition of LMPA6 changed the crystal structure of PLA, and further significantly changed the cold crystallization temperature and melting temperature of cold crystallization of the composite; The addition of LMPA6 could enhance the thermal stability and the glass transition temperature (Tg) of the ePLA/LMPA6 composites, while the storage modulus (G') decrease nonlinearly when the strain (γ) exceeds the critical strain (γC), namely the “Payne” effect appeared; The composites exhibited the characteristics of non-Newtonian fluids—"shear thinning", and which was more pronounced with the increasing content of LMPA6; When the LMPA6 content was 7%, the microfibrous structure appeared in the composite, thereby which exhibited the best compatibility; The addition of LMPA6 could enhance the strength and toughness of the composites to a certain extent, especially, when the LMPA6 content was 7%, the tensile strength (72.8 MPa) and the impact strength (5.0 kJ/m2) reached the extreme value, which were 10.8% and 78.6% higher than that of modified PLA (65.7 MPa, 2.8 kJ/m2), respectively.

Key wordscomposites    polylactic acid    epoxy resin    low melting point nylon 6    rheological behavior    toughening
收稿日期: 2018-09-03     
ZTFLH:  TQ323  
基金资助:国家自然科学基金(51563002);贵州省“百层次”创新型人才项目黔科合平台人才项目([2016]5653)
作者简介: 李明专,男,1993年生,硕士生
Sample

ePLA

/%

LMPA6

/%

Antioxidant 1010

/%

DCP

/%

ePLA/LMPA6 (0%)10000.50.5
ePLA/LMPA6 (1%)9910.50.5
ePLA/LMPA6 (3%)9730.50.5
ePLA/LMPA6 (5%)9550.50.5
ePLA/LMPA6 (7%)9370.50.5
表1  ePLA/LMPA6复合材料的组成
图1  ePLA/LMPA6复合材料的反应机理及其结构示意图
图2  ePLA/LMPA6复合材料的扫描电镜照片
图3  不同LMPA6含量的ePLA/LMPA6复合材料的XRD曲线
图4  不同LMPA6含量的ePLA/LMPA6复合材料的DSC曲线
LMPA6 contentTp/℃Tc0/℃Tcc/℃Tm/℃ΔHcc/J·g-1ΔHm/J·g-1Xc/%D/℃
092.30110.3092.25165.522.1328.7428.4218.00
193.03105.4692.29165.802.3627.7827.3012.43
390.22102.0095.05163.4112.0328.9218.6011.78
590.69102.0094.26161.828.3226.5720.9311.31
791.85105.9193.17162.255.7924.3020.0814.06
表2  不同LMPA6含量ePLA/LMPA6复合材料的DSC数据
图5  不同LMPA6含量的ePLA/LMPA6复合材料的热重曲线
图6  不同LMPA6含量的ePLA/LMPA6复合材料的动态力学曲线
图7  不同LMPA6含量的ePLA/LMPA6复合材料的储能模量(G')与应变(γ)的关系
图8  不同LMPA6含量的ePLA/LMPA6复合材料的储能模量(G')和损耗模量(G'')与频率(ω)的关系
图9  不同LMPA6含量的ePLA/LMPA6复合材料的黏度(η)与剪切速率(γ)的关系
图10  ePLA/LMPA6复合材料的力学性能与LMPA6含量的关系
[1] YvonG. Polyamide 6 composites reinforced with silicon nitride whiskers: synthesis, interface interaction, and mechanical properties [J]. J. Appl. Polym. Sci., 2010, 115(6): 3376
[2] LiC L, DouQ. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly (lactic acid): Effect of dilithium hexahydrophthalate as a novel nucleating agent [J]. Thermochim. Acta., 2014, 594: 31
[3] VinkE T H, RabagoK R, GlassnerD A, et al. Applications of life cycle assessment to NatureWorks? polylactide (PLA) production [J]. Polym. Degrad. Stabil., 2003, 80(3): 403
[4] MoazeniN, MohamadZ, DehbariN. Study of silane treatment on poly-lactic acid(PLA)/sepiolite nanocomposite thin films [J]. J. Appl. Polym. Sci., 2015, 132(6): 1
[5] SunL Y, WarrenG L, DavisD, et al. Nylon toughened epoxy/SWCNT composites [J]. J. Mater. SCI., 2011, 46(1): 207
[6] LiY J, ShimizuH. Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing [J]. Macromolecules, 2009, 42(7): 2587
[7] KawamotoN, SakaiA, HorikoshiT, et al. Nucleating agent for poly (L-lactic acid) & mdash; An optimization of chemical structure of hydrazide compound for advanced nucleation ability [J]. J. Appl. Polym. Sci., 2010, 103(1): 198
[8] WootthikanokkhanJ, CheachunT, SombatsompopN, et al. Crystallization and thermomechanical properties of PLA composites: Effects of additive types and heat treatment [J]. J. Appl. Polym. Sci., 2013, 129(1): 215
[9] ShiN, DouQ. Crystallization behavior, morphology, and mechanical properties of poly (lactic acid)/tributyl citrate/treated calcium carbonate composites [J]. Polym. Composite., 2014, 35(8): 1570
[10] ShibataM, InoueY, MiyoshiM. Mechanical properties, morphology, and crystallization behavior of blends of poly (l-lactide) with poly (butylene succinate-co-l-lactate) and poly (butylene succinate) [J]. Polymer, 2006, 47(10): 3557
[11] WangY L, HuX, LiH, et al. Polyamide-6/Poly (lactic acid) blends compatibilized by the maleic anhydride grafted polyethylene-octene elastomer [J]. J. Polym. Sci. Polym. Proc., 2010, 49(12): 1241
[12] BaiZ F, DouQ. Rheology, morphology, crystallizationbehaviors , mechanical and thermal properties of poly (lactic acid)/polypropylene/maleic anhydride-grafted polypropylene blends [J]. J. Polym. Envoron., 2018, 26(3): 959
[13] ZhangL, YangJ M, FengC W, et al. Structure and properties of surface composite nano-SiO2 and carbon nanotube glass fiber reinforced nylon 6 [J]. Acta Polymerica Sinica, 2010, 1(11): 1333
[13] (张 玲, 杨建民, 冯超伟等. 表面复合纳米SiO2和碳纳米管玻璃纤维增强尼龙6的结构与性能 [J]. 高分子学报, 2010, 1(11): 1333)
[14] HuX Y, ZhengQ, LiuD X, et al. Crystallization behavior and rheological properties of epoxy resin modified low melting nylon 6 composites[J]. Polymer Materials Science and Engineering, 2016, 32(8): 69
[14] (胡孝迎, 郑 强, 刘典新等. 环氧树脂改性低熔点尼龙6复合材料的结晶行为与流变性能 [J]. 高分子材料科学与工程, 2016, 32(8): 69)
[15] LuS J, GanH H, LiY, et al. Polymer blends of poly(vinyl chloride) and lower-melting point polyamide-6 compatibilized by epoxy [J]. Adva. Mater. Res., 2012, 550: 882
[16] LuS J, ZhouM, YuJ, et al. Study on the influence of crystal structures on the performance of low-melting polyamide 6 [J]. Polym-Plast. Technol., 2013, 52(2): 157
[17] HuX Y, ZhengQ, WangC H, et al. Crystallization and properties of nylon 6/potassium chloride composite [J]. Acta Polymerica Sinica, 2016, 6: 814
[17] (胡孝迎, 郑 强, 王彩红等. 尼龙6/氯化钾复合材料的结晶与性能 [J]. 高分子学报, 2016, 6: 814)
[18] WangY L, LiH, DaiK, et al. Structure and properties of nylon 6/polylactic acid blends [J]. Polymer Materials Science and Engineering, 2010, 26(3): 61
[18] (王玉领, 李 海, 代坤等. 尼龙6/聚乳酸共混物的结构及性能 [J]. 高分子材料科学与工程. 2010, 26(3): 61)
[19] XieH H, ZhouZ F, XuW B. Epoxy chain extended carboxy lactic acid prepolymer [J]. Plastic, 2011, 40(4): 21
[19] (谢辉辉, 周正发, 徐卫兵. 环氧扩链端羧基乳酸预聚物 [J]. 塑料, 2011, 40(4): 21)
[20] GulS, KausarA, MehmoodM, et al. Progress on epoxy/polyamide and inorganic nanofiller-based hybrids: introduction, application, and future potential [J]. Polym-Plast. Technol., 2016, 55(17): 1842
[21] LiQ F, TianM, FengW, et al. Mechanical properties and toughening mechanism of nylon 11/MBS/epoxy resin blend alloy [J]. Polymer Materials Science and Engineering, 2001, 17(4): 57
[21] (李齐方, 田 明, 冯 威等. 尼龙11/MBS/环氧树脂共混合金的力学性能和增韧机理 [J]. 高分子材料科学与工程. 2001, 17(4): 57)
[22] HanL L, DuanY X. Effect of compatibilizer on mechanical properties of polylactic acid/nylon 610 [J]. Plastic Industry, 2014, 42(5): 42
[22] (韩丽丽, 段咏欣. 增容剂对聚乳酸/尼龙610力学性能的影响 [J]. 塑料工业. 2014, 42(5): 42)
[23] JiD Y, LiuZ Y, LanX R, et al. Crystallization behavior of PLA/PBS/DCP reaction blends [J]. Acta Polymerica Sinica, 2012, 7: 694
[23] (季得运, 刘正英, 兰小蓉等. PLA/PBS/DCP反应共混体系的结晶行为研究 [J]. 高分子学报, 2012, 7: 694)
[24] WangL P, HouJ R, DuanY X, et al. Effect of interfacial compatibilizer on properties of nitrile rubber toughened polylactic acid system [J]. Acta Polymerica Sinica, 2014, 7: 914
[24] (王利平, 侯家瑞, 段咏欣等. 界面增容剂对丁腈橡胶增韧聚乳酸体系性能的影响 [J]. 高分子学报, 2014, 7: 914)
[25] ZhangC M, HuangY, DanY. Reactive blending natural rubber toughened polylactic acid [J]. Polymer Materials Science and Engineering, 2016, 32(6): 171
[25] (张春梅, 黄 云, 淡宜. 反应性共混天然橡胶增韧聚乳酸 [J]. 高分子材料科学与工程, 2016, 32(6): 171)
[26] LiuJ, DaiJ L, XuH L, et al. Morphological structure and mechanical properties of PET-MFIAA/ PP in-situ fiber-forming composites [J]. Acta Materiae Compositae Sinica, 2009, 26(1): 31
[26] (刘 俊, 代佳丽, 徐慧玲等. PET-MFIAA/PP原位成纤复合材料的形态结构及力学性能 [J]. 复合材料学报, 2009, 26(1): 31)
[27] PayneA R, WhittakerR E, SmithJ F. Effect of vulcanization on the low-strain dynamic properties of filled rubbers [J]. J. Appl. Polym. Sci., 2010, 16(5): 1191
[28] HeP S. Newly Structure and Properties of High Polymer [M]. Beijing: Science Press, 2009
[28] (何平笙. 新编高聚物的结构与性能 [M]. 北京: 科学出版社, 2009)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.