Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (4): 254-260    DOI: 10.11901/1005.3093.2018.527
  本期目录 | 过刊浏览 |
热压缩过程中2205双相不锈钢的组织演变和软化机制
吴天海1,王建军1(),张影2,李花兵3,范光伟4,刘春明1
1. 东北大学材料科学与工程学院 沈阳 110819
2. 沈阳市产业转型升级促进中心 沈阳 110083
3. 东北大学冶金学院 沈阳 110819
4. 太原钢铁集团有限公司技术中心 太原 030003
Microstructural Evolution and Softening Mechanism of 2205 Duplex Stainless Steel during Hot Compression
Tianhai WU1,Jianjun WANG1(),Ying ZHANG2,Huabing LI3,Guangwei FAN4,Chunming LIU1
1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2. Shenyang Industrial Transformation and Upgrading Promotion Center, Shenyang 110083, China
3. School of Metallurgy, Northeastern University, Shenyang 110819, China
4. Shanxi Taigang Stainless Steel Co. Ltd., Taiyuan 030003, China
引用本文:

吴天海,王建军,张影,李花兵,范光伟,刘春明. 热压缩过程中2205双相不锈钢的组织演变和软化机制[J]. 材料研究学报, 2019, 33(4): 254-260.
Tianhai WU, Jianjun WANG, Ying ZHANG, Huabing LI, Guangwei FAN, Chunming LIU. Microstructural Evolution and Softening Mechanism of 2205 Duplex Stainless Steel during Hot Compression[J]. Chinese Journal of Materials Research, 2019, 33(4): 254-260.

全文: PDF(10479 KB)   HTML
摘要: 

在不同变形温度和应变速率条件下对2205双相不锈钢进行高温压缩实验,研究了变形温度、应变速率和变形量对其显微组织中铁素体和奥氏体两相的影响,分析了高温变形软化机制。结果表明:随着变形温度的提高这种钢的峰值应力及其对应的应变逐渐减小。随着变形温度从850℃提高到950℃,2205双相不锈钢显微组织中的铁素体向奥氏体的转变占主导地位;变形温度高于950℃时,随着变形温度的提高铁素体与奥氏体之间的强度水平之差逐渐减小,显微组织中的奥氏体向铁素体的转变占主导地位。在本文的热变形条件下2205双相不锈钢的显微组织中铁素体呈现出与奥氏体不同的软化机制,铁素体的软化机制为动态回复和动态再结晶,而奥氏体因层错能较低其软化只能通过有限程度的动态回复进行。

关键词 金属材料2205双相不锈钢高温压缩动态再结晶动态回复    
Abstract

The microstructural evolution and softening mechanism of 2205 duplex stainless steel during hot deformation were investigated by high temperature compression tests at different temperatures ranging from 850°C to 1250°C with different strain rates of 0.1 s-1, 1 s-1 and 10 s -1. The microstructures after hot compression were characterized by means of optical microscope and scanning electron microscope equipped with an electron back-scattered diffraction (EBSD) system. The results show that the peak stress and the corresponding strain decrease with the increasing temperature. The stress-strain curves show typical characteristics of dynamic recrystallization or dynamic recovery under different hot compression conditions. The transition temperature at which the stress-strain curve changes from dynamic recrystallization type to dynamic recovery type increases from 1150°C to 1050°C as the strain rate increases from 0.1 s-1 to 1 s-1 and 10 s-1. The phase transformation of ferrite to austenite was dominant in the microstructure of 2205 duplex stainless steel when deformation temperature increased from 850℃ to 950℃. With the increasing temperature, the strength difference between ferrite and austenite decreased gradually, and the transformation from austenite to ferrite was predominant in the microstructure of 2205 duplex stainless steel when the deformation temperature was above 950℃. Ferrite and austenite in the microstructure of 2205 duplex stainless steel exhibited different softening mechanisms under the hot compression conditions adopted in this work. Ferrite was softened by dynamic recovery and dynamic recrystallization, while austenite with lower stacking fault energy was softened by a limit degree of dynamic recovery.

Key wordsmetallic materials    2205 duplex stainless steel    high temperature compression    dynamic recrystallization    dynamic recovery
收稿日期: 2018-08-29     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(U1860201);辽宁省重点实验室基础研究计划(LZ2015035)
作者简介: 吴天海,男,1988年生,博士
ElementCCrNiMoMnNSiPSFe
Content0.02522.355.33.21.20.150.550.030.003Bal.
表1  实验材料2205 双相不锈钢的化学成分
图1  在不同变形条件下2205 DSS的应力-应变曲线
图2  在不同变形条件下真应变为0.8试样的光学显微组织
图3  在不同热变形条件下试样显微组织中奥氏体含量的变化
图4  变形温度对铁素体和奥氏体显微硬度的影响
图5  不同应变试样的光学显微组织
图6  不同变形量试样的EBSD相组成图和相邻晶粒的取向差角的分布
图7  真应变为0.8的钢两相中不同类型的显微结构
图8  不同变形量的钢中铁素体和奥氏体晶粒的百分比
[1] BadjiR, BouabdallahM, BacroixB, et al. Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds [J]. Mater. Charact., 2008, 59(4): 447
[2] KordatosJ D, FourlarisG, PapadimitriouG. The effect of cooling rate on the mechanical and corrosion properties of SAF 2205 (UNS 31803) duplex stainless steel welds [J]. Scripta Mater., 2001, 44(3): 401
[3] ChenY L, LuoZ Y, LiJ Y. Effect of solution temperature on microstructure and pitting corrosion resistance of S32760 duplex stainless steel [J]. Acta Metall. Sin., 2015, 51(9): 1085
[3] (陈雨来, 罗照银, 李静媛. 固溶温度对S32760双相不锈钢组织与耐点蚀性能的影响 [J]. 金属学报, 2015, 51(9): 1085)
[4] CaoJ, AnL C, QiX, et al. Pitting corrosion behavior of cast Ti-bearing duplex stainless steel [J]. Chin. J. Mater. Res., 2017, 31(7): 553
[4] (曹 静, 安力聪, 齐兴等. 含Ti铸造双相不锈钢点蚀行为研究 [J]. 材料研究学报, 2017, 31(7): 553)
[5] ZouD N, HanY, ZhangWet al. Phase transformation and its effects on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel [J]. J. Iron Steel Res. Int., 2010, 17(11): 67
[6] LoK H, ShekC H, LaiJ K L, Recent developments in stainless steels [J]. Mater. Sci. Eng. R, 2009, 65(4-6): 39
[7] ZakeriM, MoayedM H. Investigation on the effect of nitrate ion on the critical pitting temperature of 2205 duplex stainless steel along a mechanistic approach using pencil electrode [J]. Corros. Sci., 2014, 85(4): 222
[8] SotomayorM E, KloeR D, LevenfeldB, et al. Microstructural study of duplex stainless steels obtained by powder injection molding [J]. J. Alloys Compd., 2014, 589(4): 314
[9] ZouD N, WuK, HanY, et al. Deformation characteristic and prediction of flow stress for as-cast 21Cr economical duplex stainless steel under hot compression [J]. Mater. Des., 2013, 51: 975
[10] LiuY, YanH. Wang X.et al. Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101 [J]. Mater. Sci. Eng. A, 2013, 575(13): 41
[11] CabreraJ M, MateoA, LlanesL, et al. Hot deformation of duplex stainless steels [J]. J. Mater. Process. Technol., 2003, 143(36): 321
[12] PatraS, GhoshA, KumarV, et al. Deformation induced austenite formation in as-cast 2101 duplex stainless steel and its effect on hot-ductility [J]. Mater. Sci. Eng. A, 2016, 660: 61
[13] FanG W, LiuJ, HanP D, et al. Hot ductility and microstructure in casted 2205 duplex stainless steels [J]. Mater. Sci. Eng. A, 2009, 515(1-2): 108
[14] HanY, ZouD, ChenZ, et al. Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium–high strain rates [J]. Mater. Charact., 2011, 62(2): 198
[15] SieurinH, SandströmR. Sigma phase precipitation in duplex stainless steel 2205 [J]. Mater. Sci. Eng. A, 2007, 444(1-2): 271
[16] MasoumiM, ReisF E U, CastroM O D, et al. Texture evolution and phase transformation of 25Cr-6Mo-5Ni experimental duplex stainless steel during hot and cold rolling [J]. J. Mater. Res. Technol., 2017, 6(3): 232
[17] LiG P, WangJ J, WuT H, et al. Microstructure and mechanical properties of 2205 DSS metal inert-gas welding joints [J]. Chin. J. Mater. Res., 2016, 30(12): 897
[17] (李国平, 王建军, 吴天海等. 2205双相不锈钢TIG焊接头组织及力学性能 [J]. 材料研究学报, 2016, 30(12): 897)
[18] CervoR, FerroP, TizianiA. Annealing temperature effects on super duplex stainless steel UNS S32750 welded joints. I: microstructure and partitioning of elements [J]. J. Mater. Sci., 2010, 45(16): 4369
[19] MaX, AnZ, ChenL, et al. The effect of rare earth alloying on the hot workability of duplex stainless steel - A study using processing map [J]. Mater. Des., 2015, 86(2): 848
[20] ChengG J, GaultB, HuangC Y, et al. Warm ductility enhanced by austenite reversion in ultrafine-grained duplex steel [J]. Acta Mater., 2018, 148: 344
[21] YangY H. High temperature deformation and corrosion behavior of 2205 duplex stainless steel under low strain rate of 0.005 s-1 [J]. Adv. Mater. Res., 2014, 933: 27
[22] SiegmundT, WernerE, FischerF D. On the thermomechanical deformation behavior of duplex-type materials [J]. J. Mech. Phys. Solids, 1995, 43(4): 495
[23] CizekP. The microstructure evolution and softening processes during high temperature deformation of a 21Cr-10Ni-3Mo duplex stainless steel [J]. Acta Mater., 2016, 106: 129
[24] Iza-MendiaA, Pinol-JuezA, UrcolaJ J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall. Mater. Trans. A, 1998, 29(12): 2975
[25] SuY S, YangY H, CaoJ C, et al. Research on hot working behavior of low-Nickel duplex stainless steel 2101 [J]. Acta Metall. Sin., 2018, 54(4): 485
[25] (苏煜森, 杨银辉, 曹建春等. 节Ni型2101双相不锈钢的高温热加工行为研究 [J]. 金属学报, 2018, 54(4): 485)
[26] BalancinO, HoffmannW A M, JonasJ J. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures [J]. Metall. Mater. Trans. A, 2000, 31(5): 1353
[27] Dehghan-ManshadiA, HodgsonP D, Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite [J]. J. Mater. Sci., 2008, 43(18): 6272
[28] WuJ. Duplex Stainless Steel [M]. Beijing: Metallurgical Industry Press, 1999
[28] (吴 玖. 双相不锈钢 [M]. 北京: 冶金工业出版社, 1999)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.