|
|
钛合金双态组织高温拉伸行为的晶体塑性有限元研究 |
李学雄1,2,徐东生1( ),杨锐1 |
1. 中国科学院金属研究所 沈阳 110016 2. 中国科学院大学 北京 100049 |
|
CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy |
Xuexiong LI1,2,Dongsheng XU1( ),Rui YANG1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. University of Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
Xuexiong LI,
Dongsheng XU,
Rui YANG.
CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. Chinese Journal of Materials Research, 2019, 33(4): 241-253.
[1] | LütjeringG, WilliamsJ C. Titanium, 2nd Ed [M]. New York: Springer, 2007 | [2] | ZhaoY Q, ChenY N, ZhangX M, et al. Phase Transformation and Heat treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012 | [2] | (赵永庆, 陈永楠, 张学敏等. 钛合金相变及热处理 [M]. 长沙: 中南大学出版社, 2012) | [3] | MaY J, LiuJ R, LeiJ F, et al. The influence of multi heat-treatment on microstructure and mechanical properties of TC4 alloy [J]. Chinese Journal of Materials Research, 2008, 22(5): 555 | [3] | (马英杰, 刘建荣, 雷家峰等. 多重热处理对TC4合金的组织和力学性能的影响 [J]. 材料研究学报, 2008, 22(5): 555) | [4] | WangX Y, LiuJ R, LeiJ F, et al. Effects of primary and secondary α phase on tensile property and fracture toughness of Ti-1023 alloy [J]. Acta Metall. Sin., 2007, 43(11): 1129 | [4] | (王晓燕, 刘建荣, 雷家峰等. 初生及次生α相对Ti-1023合金拉伸性能和断裂韧性的影响 [J]. 金属学报, 2007, 43(11): 1129) | [5] | PengM Q, ChenX W, ZhengC, et al. Effects of secondary α phase width on dynamic mechanical properties and sensitivity of adiabatic shear banding in bimodal microstructures of TC4 alloy [J]. Rare Metal Mat. Eng., 2017, 46(7): 1843 | [5] | (彭美旗, 程兴旺, 郑 超等. 次生片层α相宽度对双态组织TC4 钛合金动态压缩性能及其绝热剪切敏感性的影响 [J]. 稀有金属材料与工程, 2017, 46(7): 1843) | [6] | SongM, MaY J, WuJ, et al. Effect of cooling rate on microstructure and properties of Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.1Si [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 588 | [6] | (宋 淼, 马英杰, 邬 军等. 冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响 [J]. 中国有色金属学报, 2010, 20(1): 588) | [7] | ZangX L, ZhaoX Q, JoongkeunP, et al. Numerical simulation on distribution of micro stress-strain in dual-phase titanium alloys [J]. Rare Metal Mat. Eng., 2009, 38(6): 1058 | [7] | (臧新良, 赵希庆, Joongkeun P等. 双相钛合金微观应力-应变分布的数值模拟 [J]. 稀有金属材料与工程, 2009, 38(6): 1058) | [8] | TangB, XieS, LiuY, et al. Crystal plasticity finite element study of incompatible deformation behavior in two phase microstructure in near beta titanium alloy [J]. Rare Metal Mat. Eng., 2015, 44(3): 532 | [9] | BrittonT B, LiangH, DunneF P E, et al. The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations [J]. Proc. R. Soc. A-Math. Phys. Eng. Sci., 2010, 466(2115): 695 | [10] | WilkinsonA J, ClarkeE E, BrittonT B, et al. High resolution electron backscatter diffraction: an emerging tool for studying local deformation [J]. J. Strain Anal. Eng. Des., 2010, 45(45): 365 | [11] | FanX G, YangH. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution [J]. Int. J. Plast., 2011, 27(11): 1833 | [12] | KataniS, MadadiF, AtapourM, et al. Micromechanical modelling of damage behaviour of Ti-6Al-4V [J]. Mater. Des., 2013, 49: 1016 | [13] | NetiS, VijayshankarM N, AnkemS. Finite element method modeling of deformation behavior of two-phase materials part I: stress-strain relations [J]. Mater. Sci. Eng. A-Struct. Mater., 1991, 145(1): 47 | [14] | BridierF, McDowellD L, VillechaiseP, et al. Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading [J]. Int. J. Plast., 2009, 25(6): 1066 | [15] | MaY J, LiJ W, LeiJ F, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4ELI alloy [J]. Acta Metall. Sin., 2010, 46(9): 1086 | [15] | (马英杰, 李晋炜, 雷家峰等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46(9): 1086) | [16] | MaY J, LiuJ R, LeiJ F, et al. Influence of fatigue crack tip plastic zone on crack propagation behavior in TC4ELI alloy [J]. Acta Metall. Sin., 2009, 19(10): 1789 | [16] | (马英杰, 刘建荣, 雷家峰等. TC4ELI合金疲劳裂纹尖端塑性区对裂纹扩展的影响 [J]. 中国有色金属学报, 2009, 19(10): 1789) | [17] | HanF B. CPFEM study of nonindentation and high cycle fatigue behavior for Ti-6Al-4V alloy [D]. Xi’an: Northwestern Polytechnical University, 2009 | [17] | (韩逢博. Ti-6Al-4V合金纳米压痕变形与高周疲劳行为CPFEM研究 [D]. 西安: 西北工业大学, 2016) | [18] | KuangS, KangY L, YuH, et al. Stress-strain partitioning analysis of constituent phases in dual phase steel based on the modified law of mixture [J]. Int. J. Miner. Metall. Mater., 2009, 16(4): 393 | [19] | HuangB Y, LiC G, ShiL K, et al. China Materials Engineering Canon, Vol.04, Non-Ferrous Metal Materials and Engineering [M]. Beijing: Chemical Industries Press, 1994 | [19] | (黄伯云, 李成功, 石开力等. 材料工程大典,第4卷,有色金属材料工程(上) [M]. 北京: 化学工业出版社, 1994) | [20] | AsaroR J, NeedlemanA. Overview no. 42 texture development and strain-hardening in rate dependent polycrystals [J]. Acta Metallurgica, 1985, 33(6): 923 | [21] | HillR. Generalized constitutive relations for incremental deformation of metal crystals by multi-slip [J]. J. Mech. Phys. Solids., 1966, 14(2): 95 | [22] | HillR, RiceJ R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. J. Mech. Phys. Solids., 1972, 20(6): 401 | [23] | PeirceD, AsaroR J, NeedlemanA. An analysis of nonuniform and localized deformation in ductile single-crystals [J]. Acta Metallurgica, 1982, 30(6): 1087 | [24] | ProustG, TomeC N, KaschnerG C. Modeling texture, twinning and hardening evolution during deformation of hexagonal materials [J]. Acta Mater., 2007, 55(6): 2137 | [25] | TomeC, KaschnerG C. Modeling texture, twinning and hardening evolution during deformation of hexagonal materials [J]. Materials Science Forum, 2005, 495: 1001 | [26] | KalidindiS R. Incorporation of deformation twinning in crystal plasticity models [J]. J. Mech. Phys. Solids., 1998, 46(2): 267 | [27] | DunneF P E, RuggD. On the mechanisms of fatigue facet nucleation in titanium alloys [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31(11): 949 | [28] | McDowellD L, DunneF P E. Microstructure-sensitive computational modeling of fatigue crack formation [J]. Int. J. Fatigue., 2010, 32(9): 1521 | [29] | JiaN, RotersF, EisenlohrP, et al. Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in alpha-brass [J]. Acta Mater., 2012, 60(3): 1099 | [30] | JiaN, RaabeD, ZhaoX. Texture and microstructure evolution during non-crystallographic shear banding in a plane strain compressed Cu-Ag metal matrix composite [J]. Acta Mater., 2014, 76: 238 | [31] | HutchinsonJ W. Bounds and self-consistent estimates for creep of polycrystalline materials [J]. Proc. R.Soc. London Ser. A-Math. Phys. Eng. Sci., 1976, 348(1652): 101 | [32] | BassaniJ L, WuT Y. Latent hardening in single crystals II analytical characterization and predictions [J]. Proc. R. Soc. A-Math. Phys. Eng. Sci., 1991, 435(1893): 21 | [33] | PeirceD, AsaroR J, NeedlemanA. Material rate dependence and localized deformation in crystalline solids [J]. Acta Metallurgica, 1983, 31(12): 1951 | [34] | TamuraI, TomotaY, YamaokaY, et al. The Strength and ductility of two-phase iron alloys [J]. Tetsu To Hagane-J. Iron Steel Inst. Jpn., 1973, 59(3): 454 | [35] | BalasubramanianS, AnandL. Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium [J]. Acta Mater., 2002, 50(1): 133 | [36] | SimmonsG, WangH. Single Crystal Elastic Constants and Calculated Aggregate Properties [M]. Cambridge: The MIT Press, 1997 | [37] | OgiH, KaiS, LedbetterH, et al. Titanium's high-temperature elastic constants through the hcp-bcc phase transformation [J]. Acta Mater., 2004, 52(7): 2075 | [38] | DuanY P, Mesoscopic research and simulation on hot deformation microstructure in TB8 alloy [D]. Hefei: Hefei University of Technology, 2009 | [38] | (段园培. TB8合金热变形组织介观尺度研究与模拟 [D]. 合肥: 合肥工业大学, 2009) | [39] | ZherebtsovS, MurzinovaM, SalishchevG, et al. Spheroidization of the lamellar microstructure in Ti-6Al-4V alloy during warm deformation and annealing [J]. Acta Mater., 2011, 59(10): 4138 | [40] | PatonN E, BackofenW A. Plastic deformation of Titanium at elevated temperatures [J]. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 1970, 1(10): 2839 | [41] | GuanJ, LiuJ R, LeiJ F, et al. The relationship of heat treatment-microstructures-mechanical properties of the TC18 titanium alloy [J]. Chinese Journal of Materials Research, 2009, 23(1): 77 | [41] | (官 杰, 刘建荣, 雷家峰等. TC18钛合金的组织和性能与热处理制度的关系 [J]. 材料研究学报, 2009, 23(1): 77) | [42] | YangM, WangG, TengC Y, et al. 3D phase field simulation of effect of interfacial energy anisotropy on sideplate growth in Ti-6Al-4V [J]. Acta Metall. Sin., 2012, 48(2): 148 | [42] | (杨 梅, 王 刚, 滕春禹等. Ti-6Al-4V中界面能对α相片层生长的影响三维相场模拟 [J]. 金属学报, 2012, 48(2): 148) | [43] | ZhangJ H, XuD S, WangY Z, et al. Influences of dislocations on nucleation and micro-texture formation of α phase in Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2016, 52(8): 905 | [43] | (张金虎, 徐东生, 王云志等. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响 [J]. 金属学报, 2016, 52(8): 905) | [44] | ShiR, WangY. Variant selection during α precipitation in Ti-6Al-4V under the influence of local stress-A simulation study [J]. Acta Mater., 2013, 61(16): 6006 | [45] | BurgersW G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium [J]. Physica, 1934, 1(7): 561 | [46] | WangS C, AindowM, StarinkM J. Effect of self-accommodation on α/α boundary populations in pure titanium [J]. Acta Mater., 2003, 51(9): 2485 | [47] | KehagiasT, KomninouP, DimitrakopulosG P, et al. Slip transfer across low-angle grain boundaries of deformed titanium [J]. Scripta Metal Mater., 1995, 33(12): 1883 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|