Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (12): 893-899    DOI: 10.11901/1005.3093.2021.601
  研究论文 本期目录 | 过刊浏览 |
固溶温度对Ti-4Al-6Mo-2V-5Cr-2Zr钛合金的组织和拉伸性能的影响
王圣元1, 张浩宇1, 周舸1, 陈晓博2, 陈立佳1()
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.澳大利亚皇家墨尔本理工大学工程学院;Carlton 3053 澳大利亚
Effect of Solution Treatment Temperature on Microstructure and Tensile Properties of Ti-4Al-6Mo-2V-5Cr-2Zr Alloy
WANG Shengyuan1, ZHANG Haoyu1, ZHOU Ge1, CHEN Xiaobo2, CHEN Lijia1()
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.School of Engineering, RMIT University, Carlton 3053, Australia
引用本文:

王圣元, 张浩宇, 周舸, 陈晓博, 陈立佳. 固溶温度对Ti-4Al-6Mo-2V-5Cr-2Zr钛合金的组织和拉伸性能的影响[J]. 材料研究学报, 2022, 36(12): 893-899.
Shengyuan WANG, Haoyu ZHANG, Ge ZHOU, Xiaobo CHEN, Lijia CHEN. Effect of Solution Treatment Temperature on Microstructure and Tensile Properties of Ti-4Al-6Mo-2V-5Cr-2Zr Alloy[J]. Chinese Journal of Materials Research, 2022, 36(12): 893-899.

全文: PDF(14576 KB)   HTML
摘要: 

研究了固溶温度对一种亚稳β钛合金(Ti-4Al-6Mo-2V-5Cr-2Zr)的锻态组织和室温拉伸性能的影响。结果表明,固溶温度低于相变点时大量的α相在β基体中析出并聚集在滑移带附近,随着固溶温度接近相变点α相的数量减少且部分滑移带消失。固溶温度高于相变点时显微组织为单一的β相且滑移带完全消失,随着固溶温度继续升高β晶粒聚集且长大。这种合金经750℃×1 h固溶处理后达到良好的强度塑性匹配,气抗拉强度、屈服强度和伸长率分别为957 MPa、887 MPa和11.7%。

关键词 金属材料β钛合金固溶处理显微组织α拉伸性能    
Abstract

A novel metastable β-Ti alloy (Ti-4Al-6Mo-2V-5Cr-2Zr) was designed, melt and wrought to prepare plates. Then the effect of solution treatment temperature on the microstructure and room temperature tensile properties of the as wrought alloy was investigated. Results show that a large number of α-phase precipitates from the β-matrix and gathers near slip bands when the solution temperature is lower than the phase transition temperature of the alloy. As the solution temperature approaches the phase transition temperature, the quantity of α-phase decreases and a part of the slip bands disappears. When the solution temperature is above the phase transition temperature, the alloy microstructure is composed fully of β-phase, while the slip bands disappear completely. As the solution temperature continues to rise, β-phase grains tend to aggregate and grow up. The alloy presents a good matching of strength and plasticity after solution treatment at 750℃×1 h. The corresponding ultimate tensile strength, yield strength and elongation are 957 MPa, 887 MPa and 11.7%, respectively.

Key wordsmetallic materials    β titanium alloy    solution treatment    microstructure    α phase    tensile property
收稿日期: 2021-10-26     
ZTFLH:  TG146.2+3  
基金资助:国家自然科学基金(52104379)
作者简介: 王圣元,男,1994年生,博士
AlMoVCrZrTi
3.745.601.854.822.09Bal.
表1  Ti-4Al-6Mo-2V-5Cr-2Zr合金的化学成分
图1  锻态Ti-4Al-6Mo-2V-5Cr-2Zr合金的光学显微组织和XRD谱
Treated stateSolution temperature/℃Solution time/hCooling mode

S1

S2

S3

S4

750

770

810

830

1

1

1

1

Water cooling

Water cooling

Water cooling

Water cooling

表2  Ti-4Al-6Mo-2V-5Cr-2Zr合金的固溶处理工艺参数
图2  Ti-4Al-6Mo-2V-5Cr-2Zr合金在相变点以下固溶处理1 h后的显微组织
图3  Ti-4Al-6Mo-2V-5Cr-2Zr合金在相变点以上固溶1 h后的EBSD-IPF图和相分布
图4  不同处理状态Ti-4Al-6Mo-2V-5Cr-2Zr合金的显微组织
Treated stateRm/MPaRP0.2/MPaA/%

S1

S2

S3

S4

957

915

925

896

887

875

885

866

11.7

6.5

8.5

9.3

As-forged8578242.1
表3  不同热处理状态Ti-4Al-6Mo-2V-5Cr-2Zr合金的拉伸性能
图5  Ti-4Al-6Mo-2V-5Cr-2Zr合金在不同温度固溶处理后的拉伸断口形貌
1 Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. Chin. J. Nonferrous Met., 2015, 25(2): 280
1 金和喜, 魏克湘, 李建明 等. 航空用钛合金研究进展 [J]. 中国有色金属学报, 2015, 25(2): 280
2 Shang G Q, Zhu Z S, Chang H, et al. Development of ultra-high strength titanium alloy [J]. Rare Metals, 2011, 35(2): 286
2 商国强, 朱知寿, 常 辉 等. 超高强度钛合金研究进展 [J]. 稀有金属, 2011, 35(2): 286
3 Zhang J Y, Chen G F, Zhang S, et al. Progress of metastable β titanium alloy with transformation-induced plasticity and twinning-induced plasticity [J]. Rare Metal Mat. Eng., 2020, 49(1): 370
3 张金勇, 陈冠方, 张 帅 等. 亚稳β型TRIP/TWIP钛合金研究进展 [J]. 稀有金属材料与工程, 2020, 49(1): 370
4 Xiao W L, Fu Y, Wang J S, et al. Recent development in titanium alloys with high strength and high elasticity [J]. J. Aero. Mater., 2020, 40(3): 11
4 肖文龙, 付 雨, 王俊帅 等. 高强度高弹性钛合金的研究进展 [J]. 航空材料学报, 2020, 40(3): 11
5 Niu J Z, Sun Z G, Chang H, et al. Review on 3D printing of biomedical titanium alloy [J]. Rare Metal Mat. Eng., 2019, 48(5): 1697
5 牛京喆, 孙中刚, 常 辉 等. 3D打印医用钛合金研究进展 [J]. 稀有金属材料与工程, 2019, 48(5): 1697
6 Chen Y, Du Z, Xiao S, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
7 Du Z, Xiao S, Xu L, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Des., 2014, 55(3): 183
doi: 10.1016/j.matdes.2013.09.070
8 Fan J, Li J, Kou H, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater. Des., 2015, 83(15): 499
doi: 10.1016/j.matdes.2015.06.015
9 Fan X G, Zhang Y, Gao P F, et al. Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field [J]. Mater. Sci. Eng. A, 2017, 694: 24
doi: 10.1016/j.msea.2017.03.095
10 Meng L, Kitashima T, Tsuchiyama T, et al. Effect of α precipitation on β texture evolution during β-processed forging in a near-β titanium alloy [J]. Mater. Sci. Eng. A, 2020, 771(C): 138640
doi: 10.1016/j.msea.2019.138640
11 Chen Q, Wang Q J, Wang D C, et al. Effect of solution temperature on microstructure and properties of new type metastable β titanium alloy [J]. T. Mater. Heat Treat., 2016, 37(8): 29
11 陈 强, 王庆娟, 王鼎春 等. 固溶温度对新型亚稳β钛合金组织与性能的影响 [J]. 材料热处理学报, 2016, 37(8): 29
12 Li X, Wang Y M, Lin J G, et al. Effects of solution temperature on microstructure and property of Ti55531 alloy [J]. T. Mater. Heat Treat., 2017, 38(2): 43
12 李 霞, 王玉明, 林建国 等. 固溶温度对Ti55531钛合金的组织与性能的影响 [J]. 材料热处理学报, 2017, 38(2): 43
13 Li Y, Qiang W, Ma C L, et al. Phase transformation in a β-Ti alloy with good balance between high strength and high fracture toughness [J]. Chinese J. Aeronaut., 2009, 22(5): 535
doi: 10.1016/S1000-9361(08)60137-5
14 Wang P Y, Zhang H Y, Zhang Z P, et al. Effect of solution temperature on microstructure and tensile properties of metastable beta titanium alloy Ti-4Mo-6Cr-3Al-2Sn [J]. Chin. J. Mater. Res., 2020, 34(6): 473
14 王鹏宇, 张浩宇, 张志鹏 等. 固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响 [J]. 材料研究学报, 2020, 34(6): 473
15 Wang X M, Zhang S Q, Yuan Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy [J]. Chin. J. Mater. Res., 2017, 31(6): 409
doi: 10.11901/1005.3093.2016.267
15 王雪萌, 张思倩, 袁子尧 等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响 [J]. 材料研究学报, 2017, 31(6): 409
doi: 10.11901/1005.3093.2016.267
16 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31(5): 352
doi: 10.11901/1005.3093.2016.621
16 王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31(5): 352
doi: 10.11901/1005.3093.2016.621
17 Dong H B, Jiang Z Y, Zhou S W, et al. Effect of Pre-aging on Superplasticity of TB8 Ti-Alloy [J]. Chin. J. Mater. Res., 2018, 32(7): 541
doi: 10.11901/1005.3093.2017.542
17 董洪波, 姜智勇, 周盛武 等. 预时效对TB8钛合金超塑性的影响 [J]. 材料研究学报, 2018, 32(7): 541
doi: 10.11901/1005.3093.2017.542
18 Wang G R, Gao Q, Liu J X, et al. Composition design of beta-titanium alloys: theoretical, methodological and practical advances [J]. Materials Reports, 2017, 31(3): 44
18 王光荣, 高 颀, 刘继雄 等. β钛合金成分设计: 理论、方法、实践 [J]. 材料导报, 2017, 31(3): 44
19 Zhu W G, Lei J, Zhang Z X, et al. Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with Bi-modal structure [J]. Mater. Sci. Eng. A, 2019, 762: 138086
doi: 10.1016/j.msea.2019.138086
20 Yumak N, Aslantas K. A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9(6): 15360
doi: 10.1016/j.jmrt.2020.10.088
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.