Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (1): 27-33    DOI: 10.11901/1005.3093.2018.436
  研究论文 本期目录 | 过刊浏览 |
低电子浓度Ti-Nb-Zr合金组织及性能研究
周洪雷1,侯峰起2,3,郝玉琳3()
1. 吉林大学物理学院 长春 130012
2. 西部超导材料科技股份有限公司 西安 710021
3. 中国科学院金属研究所 沈阳 110016
Microstructures and Mechanical Properties of Ti-Nb-Zr Alloys with Low Electron-to-Atom Ratio
Honglei ZHOU1,Fengqi HOU2,3,Yulin HAO3()
1. College of Physics, Jilin University, Changchun 130012, China
2. Western Superconducting Technologies Co., Ltd., Xi'an 710021, China
3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

周洪雷,侯峰起,郝玉琳. 低电子浓度Ti-Nb-Zr合金组织及性能研究[J]. 材料研究学报, 2019, 33(1): 27-33.
Honglei ZHOU, Fengqi HOU, Yulin HAO. Microstructures and Mechanical Properties of Ti-Nb-Zr Alloys with Low Electron-to-Atom Ratio[J]. Chinese Journal of Materials Research, 2019, 33(1): 27-33.

全文: PDF(4762 KB)   HTML
摘要: 

研究了β稳定元素Nb和中性元素Zr对Ti-Nb-Zr合金的微观组织及力学性能的影响,结果显示:随着Nb和Zr含量增加,α"马氏体相和ω相两种典型亚稳相变均可被抑制,在较低电子浓度条件下获得单一β相组织,其临界电子浓度约为4.19,显著低于Ti-Nb二元合金的临界值(4.24);低电子浓度单一β相Ti-Nb-Zr合金的弹性模量较低,其强度与弹性模量比值较高,具有优于Ti-Nb二元合金的生物力学相容性。

关键词 金属材料Ti-Nb-Zr合金微观组织相变弹性模量强度    
Abstract

The microstructure and mechanical property were investigated for Ti-Nb-Zr Ti-alloys with varying contents of (24~30)Nb and (8~12 mass fraction%)Zr. The results show that the increase of Nb- and Zr-content is favorable for suppressing α" martensite- and ω phase- formation, while the alloys composed of single β phase can be obtained as their electron-to-atom ratio higher than about 4.19, which is much less than the ratio 4.24 for Ti-Nb binary alloys. The Ti-30Nb-(8~12)Zr alloys of single β phase exhibit low Young's modulus of about 62 GPa and high strength-to-modulus of about 0.9%, which imply that these alloys possess superior biomechanical compatibility rather than Ti-Nb binary alloys.

Key wordsmetallic materials    Ti-Nb-Zr alloy    microstructure    phase transformation    elastic modulus    strength
收稿日期: 2018-07-05     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(51071152)
作者简介: 周洪雷,男,1971年生,工程师

Nominal

composition

NbZre/a
Mass fraction/%Atom fraction/%Mass fraction/%Atom fraction/%
Ti-24Nb-8Zr2414.685.04.146
Ti-24Nb-10Zr2414.8106.34.148
Ti-24Nb-12Zr2415.0127.64.150
Ti-26Nb-8Zr2616.085.04.160
Ti-26Nb-10Zr2616.2106.44.162
Ti-26Nb-12Zr2616.4127.74.164
Ti-28Nb-8Zr2817.585.14.175
Ti-28Nb-10Zr2817.7106.44.177
Ti-28Nb-12Zr2817.9127.84.179
Ti-30Nb-8Zr3018.985.14.189
Ti-30Nb-10Zr3019.2106.54.192
Ti-30Nb-12Zr3019.4127.94.194
表1  Ti-Nb-Zr合金名义成分及相应价电子浓度e/a值
图1  固溶态Ti-xNb-10Zr合金光学组织:x=24 (a), 26 (b), 28 (c), 30 (d)
图2  固溶态Ti-xNb-12Zr合金X-ray衍射分析:(1) x=24, (2) x=26, (3) x=28, (4) x=30
图3  固溶态Ti-28Nb-xZr合金X-ray衍射分析:(1) x=8, (2) x=10, (3) x=12
图4  固溶态Ti-26Nb-8Zr(a, b)及Ti-26Nb-12Zr(c, d)合金TEM明场像和ω相暗场像
图5  固溶态Ti-28Nb-8Zr(a)及Ti-28Nb-10Zr(b)合金TEM明场形貌像及衍射像
Ti-24NbTi-26NbTi-28NbTi-30Nb
8Zrα"ωβα"ωβα"ωββ
10Zrα"ωβα"ωβα"ββ
12Zrα"ωβα"ωβββ
表2  固溶处理态Ti-Nb-Zr合金相组成
图6  固溶态Ti-(24-30)Nb-(8-12)Zr合金的应力位移曲线:(a) Ti-24Nb-xZr;(b) Ti-26Nb-xZr;(c) Ti-28Nb-xZr;(d) Ti-30Nb-xZr
图7  固溶态Ti-Nb-Zr合金的抗拉强度(a)、弹性模量(b)及强度模量比(c): (1) Ti-24Nb-xZr;(2) Ti-26Nb-xZr;(3) Ti-28Nb-xZr;(4) Ti-30Nb-xZr
1 ParkJ B, LakesR S. Biomaterials: an introduction (2nd ed.) [M]. New York: Plenum Press, 1992
2 LongM, RackH J. Review: titanium alloys in total joint replacement-a materials science perspective [J]. Biomaterials, 1998, 19(18): 1621
3 WangK. The use of titanium for medical application in the USA [J]. Mater. Sci. Eng. A, 1996, 213(1-2): 134
4 HaoY L, NiinomiM, KurodaD, et al. Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite [J]. Metall. Mater. Trans. A, 2002, 33(10): 3137
5 YangY, LiG P, WuS Q, et al. Progress in research of Gum Metal [J]. Chinese Journal of Materials Research, 2011, 25(1): 1
5 杨义, 李阁平, 吴松全等. Gum Metal钛合金研究进展 [J]. 材料研究学报, 2011, 25(1): 1)
6 GeX N, ZhuD C, FengZ M. A new beta titanium alloy of low elastic modulus [J]. Chinese Journal of Materials Research, 2011, 25(4): 369
6 葛向南, 朱达川, 冯作明. 低弹性模量β钛合金的制备和性能 [J]. 材料研究学报, 2011, 25(4): 369)
7 HaoY L, LiS J, SunS Y, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys [J]. Mater. Sci. Eng. A, 2006, 441(1-2): 112
8 Abdel-HadyM, FuwaH, HinoshitaK, et al. Phase stability change with Zr content in Ti-Nb alloys [J]. Scr. Mater., 2007, 57(11): 1000
9 HaoY L, LiS J, SunS Y, et al. Super-elastic titanium alloy with unstable plastic deformation [J]. Appl. Phys. Lett., 2005, 87(9): 090916
10 HaoY L, LiS J, SunS Y, et al. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater., 2007, 3(2): 277
11 HaoY L, LiS J, SunB B, et al. Ductile titanium alloy with low poisson’s ratio [J]. Phys. Rev. Lett., 2007, 98(21): 216405
12 CuiJ P, HaoY L, LiS J, et al. Reversible movement of homogenously nucleated dislocations in a β-titanium alloy [J]. Phys. Rev. Lett., 2009, 102(4): 045503
13 HaoY L, LiS J, PrimaF, et al. Controlling reversible martensitic transformation in titanium alloys with high strength and low elastic modulus [J]. Scr. Mater., 2012, 67(5): 487
14 HaoY L, WangH L, LiT, et al. Superelasticity and tunable thermal expansion across a wide temperature range [J].J. Mater. Sci. & Tech., 2016, 32(8): 705
15 WangH L, HaoY L, HeS Y, et al. Tracing the coupled atomic shear and shuffle for a cubic and a hexagonal crystal transition [J]. Scr. Mater., 2017, 133: 70
16 WangH L, HaoY L, HeS Y, et al. Elastically confined martensitic transformation at the nanoscale in a multifunctional titanium alloy [J]. Acta Mater., 2017, 135: 330
17 ZhangJ R, ShahS A A, HaoY L, et al. Weak notch sensitivity in a biomedical titanium alloy exhibiting nonlinear elasticity [J]. Sci. China Mater., 2018, 61(4): 537
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.