Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (1): 15-26    DOI: 10.11901/1005.3093.2017.774
  研究论文 本期目录 | 过刊浏览 |
加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能
王宜豹1,2,黄楠1(),刘鲁生1,袁子尧1,李鹏1,张文雪2(),姜辛1()
1. 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2. 长安大学材料科学与工程学院 西安 710064
Preparation and Cutting Performance of Diamond Coated Hard Alloy Cutting Tools for 7075 Aviation Al-alloy
Yibao WANG1,2,Nan HUANG1(),Lusheng LIU1,Ziyao YUAN1,Peng LI1,Wenxue ZHANG2(),Xin JIANG1()
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
引用本文:

王宜豹,黄楠,刘鲁生,袁子尧,李鹏,张文雪,姜辛. 加工7075航空铝合金用金刚石涂层刀具的制备及其切削性能[J]. 材料研究学报, 2019, 33(1): 15-26.
Yibao WANG, Nan HUANG, Lusheng LIU, Ziyao YUAN, Peng LI, Wenxue ZHANG, Xin JIANG. Preparation and Cutting Performance of Diamond Coated Hard Alloy Cutting Tools for 7075 Aviation Al-alloy[J]. Chinese Journal of Materials Research, 2019, 33(1): 15-26.

全文: PDF(30392 KB)   HTML
摘要: 

采用热丝化学气相沉积(HFCVD)技术在WC-Co8%硬质合金刀具表面制备金刚石涂层,调节甲烷浓度等沉积工艺制备了单层金刚石涂层刀具和微米金刚石涂层(1.2 μm)、纳米金刚石涂层(200 nm)交替多层金刚石涂层刀具。以7075航空铝合金作为切削工件,在无润滑干切条件下测试了单层金刚石涂层刀具和多层金刚石涂层刀具的切削性能。实验结果表明,切削2 h后单层金刚石涂层刀具涂层脱落宽度达到35 μm,刀刃钝化;有多层金刚石涂层刀具的刃型保持完整,涂层无脱落。对单层金刚石涂层和多层金刚石涂层平面样品进行了洛氏压痕实验。结果表明,多层金刚石涂层的脱落面积约为单层金刚石涂层脱落面积的1/5到1/10,进一步说明多层金刚石涂层有更强的抵抗裂纹产生的能力。这些结果表明,金刚石多层结构能提高涂层与基体的界面结合力,延长金刚石涂层刀具的使用寿命。

关键词 材料表面与界面热丝化学气相沉积金刚石涂层刀具金刚石多层切削性能    
Abstract

Diamond coatings were deposited on hard alloy cutting tool of WC-Co8% via hot filament chemical vapor deposition (HFCVD) technology. Two type of coatings, namely, monolayered coating consisted of microcrystalline with grain size of 1.2 μm and multi-layered coating consisted of nanocrystalline with grain size of 200 nm, were prepared by adjusting the methane concentration in the reaction chamber. Then the cutting performance of WC-Co8% cutting tools coated with the two coatings was comparatively assessed via machining 7075 aviation Al-alloy under dry cutting conditions without lubrication. The results show that after cutting for 2 h, coating partially spalled off and the tool edge became blunted for the tool with monolayer diamond coating, in the contrary, the tool edge remains intact and the coating does not fall off for the tool with multilayed diamond coating. Furthermore, Rockwell indentation test of flat samples of hard alloy with coatings revealed that the area of delamination induced by indentation for the multilayered coating is 1/5 to 1/10 of that for the monolayered one. Accordingly, the cracking resistance of the multilayered diamond coating should be better. It follows that the multilayered structure can be adopted to enhance the adhesion of diamond coatings to the substrate, thereby effectively increase the service performance of diamond coating tools.

Key wordssurface and interface in the materials    hot filament chemical vapor deposition    diamond coating tool    multilayer diamond    cutting performance
收稿日期: 2017-12-29     
ZTFLH:  O484  
基金资助:国家自然科学基金(51202257);沈阳市双百工程(Z17-7-027);沈阳市双百工程(Z18-0-025)
作者简介: 王宜豹,男,1991年生,硕士生
表1  不同甲烷浓度条件下在WC-Co8%片表面制备金刚石涂层沉积参数
图1  硬质合金刀具表面的两种不同结构金刚石涂层设计
表2  沉积不同结构的金刚石涂层刀具参数
图2  在不同甲烷浓度条件下沉积金刚石涂层的表面形貌
图3  在不同甲烷浓度条件下沉积金刚石涂层的截面形貌.
图4  在不同甲烷浓度条件下沉积金刚石涂层的生长速率
图5  在不同甲烷浓度条件下沉积金刚石涂层的Raman图谱分峰拟合
图6  在不同甲烷浓度条件下沉积金刚石薄膜的IDiamond/IG
图7  在不同甲烷浓度条件下沉积的金刚石涂层XRD图谱
图8  在不同甲烷浓度条件下沉积金刚石涂层的FWHM
图9  单层金刚石涂层刀具形貌
图10  单层和多层金刚石刀具的刀刃和截面形貌
图11  单层和多层金刚石的拉曼图谱
图12  不同工艺金刚石涂层的洛氏压痕
图13  用不同工艺制备的金刚石涂层刀具切削1 h,1.5 h,2 h后刀刃处的光学显微镜照片
图14  用不同工艺制备的金刚石涂层刀具切削1 h, 1.5 h, 2 h刀刃处的扫描照片
图15  单层金刚石涂层刀具刀刃破损处的SEM照片
图16  不同涂层结构的失效分析
1 AshfoldM N R, MayP W, C ARegoet al. Thin film diamond by chemical vapour deposition methods [J].Chem. Soc. Rev., 1994, 23: 21
2 LeeS T, LinZ, JiangX. CVD diamond films: nucleation and growth [J]. Mat. Sci. Engr., 1999, 4(25): 123
3 MatumotoS, SatoY, TsutusmiM, et al. Growth of diamond particles from methane-hydrogen gas [J].J. Mater. Sci., 1982, 17(11): 3106
4 ChenN C, ShenB, YangG D, et al. Tribological and cutting behavior of silicon nitride tools coated with monolayer and multilayer-microcrystalline HFCVD diamond films [J]. Appl. Surf. Sci., 2013, 265(1): 850
5 ShenB, SunF H, ZhangZ M, et al. Application of ultra-smooth composite diamond film coated WC-Co drawing dies under water-lubricating conditions [J]. Trans. Nonferrous Met. Soc. China, 2013, 23(1): 161
6 BouzakisK D, MichailidisN, SkordarisG, et al. Cutting with coated tools: Coating technologies, characterization methods and performance optimization [J]. Cirp. Ann-Manuf. Techn., 2012, 61(2): 703
7 JohnstonJ M, BakerP, CatledgeS A. Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers[J]. Diam. Relat. Mater., 2016, (69): 114
8 UhlmannE, KoenigJ. CVD diamond coatings on geometrically complex cutting tools [J]. Ann-Manuf. Techn., 2009, 58(1): 65
9 HeiH J, MaJ, LiX J, et al. Preparation and performance of chemical vapor deposition diamond coatings synthesized onto the cemented carbide micro-end mills with a SiC interlayer [J]. Surf. Coat. Tech., 2015, 261: 272
10 ZhangJ G, WangX C, ShenB, et al. Effect of boron and silicon doping on improving the cutting performance of CVD diamond coated cutting tools in machining CFRPP [J]. Int. J. Refract. Meth., 2013, 41(11): 285
11 ZhangJ G, ShenB, SunF H, et al. Study on fabrication and cutting performance of CVD diamond coated drills in machining the carbon fiber reinforced plastics [J]. Solid State Phenom., 2011, (175): 239
12 SalgueiredoE, AmaralM, NetoM A, et al. HFCVD diamond deposition parameters optimized by a Taguchi Matrix [J]. Vacuum., 2011, 85(6): 701
13 WeiQ P, AshfoldM N R, MankelevichY A, et al. Diamond growth on WC-Co substrates by hot filament chemical vapor deposition: Effect of filament–substrate separation [J]. Diam. Relat. Mater., 2011, 20 (5-6): 641
14 ZhangJ G, ZhangT, WangX C, et al. Simulation and experimental studies on substrate temperature and gas density field in HFCVD diamond films growth on WC-Co drill tools [J]. Surf. Rev. Lett., 2013, 20 (2): 593
15 BouzakisK D, SkordarisG, BouzakisE, et al. Effect of the interface fatigue strength of NCD coated hard metal inserts on their cutting performance in milling [J]. Diam. Relat. Mater., 2015, 59: 80
16 HanyuH, MurakamiY, KamiyaS, et al. New diamond coating with finely crystallized smooth surface for the tools to achieve fine surface finish of non-ferrous metals [J]. Surf. Coat. Tech., 2003, 169 (22): 258
17 GruenD M, LiuS Z, KraussA R, et al. Buckyball microwave plasmas: fragmentation and diamond-film growth [J].J. Appl. Phys., 1994,75 (3): 1758
18 ZhouD, McCauleyT G, QinL C, et al. Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma [J].J. Appl. Phys., 1998, 83(1): 540
19 ZhangY F, ZhangF, GaoQ J, et al. The roles of argon addition in the hot filament chemical vapor deposition system [J]. Diam. Relat. Mater., 2001, 10(8): 1523
20 PiazzaF, GolansikA, SchulzeS, et al. Transpolyacetylence chains in hydrngenated amorphous carbon films free of nanocrystalline diamond [J]. Appl. Phys. Lett., 2003, 82 (3): 358
21 FerrariA C, RobertsonJ. Resonant Raman spectroscopy of disordered amorphous and diamondlike carbon [J]. Phys. Rev. B, 2001, 64: 075414
22 WilliamsO A. Nanocrystalline diamond [J]. Diam. Relat. Mater., 2011, 20(5): 621
23 RalchenkoV G, SmolinA A, PereverzevV G, et al. Diamond deposition on steel with CVD tungsten intermediate layer [J]. Diam. Relat. Mater., 1995, 4(5): 754
24 WangT, XiangL. ShiW, et al. Deposition of diamond/β-Si C/cobalt silicide composite interlayers to improve adhesion of diamond coating on WC-Co substrates by DC-Plasma Assisted HFCVD [J]. Surf. Coat. Tech., 2011, 205(8-9): 3027
25 AskariS J, ChenG C, AkhtarF, et al. Adherent and low friction nano-crystalline diamond film grown on titanium using microwave CVD plasma [J]. Diam. Relat. Mater., 2008, 17(3): 294
26 VidakisN, AntoniadisA, BilalisN. The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds [J]. J. Mater. Process Tech., 2003, 143: 481
27 SkordarisG, BouzakisK D, CharalampousP, et al. Effect of structure and residual stresses of diamond coated cemented carbide tools on the film adhesion and developed wear mechanisms in milling [J]. Cirp. Ann-Manuf. Techn., 2016, 65(1): 101
28 WoehrlN, HirteT, PosthO, et al. Investigation of the coefficent of thermal expansion in nanocrystalline [J]. Diam. Relat. Mater., 2009, 18(2): 224
29 ZhaoD C, RenN. The methods of reducing intrinsic stress of superhard diamond-like films[J].Vccuum & Cryogenics, 2006, 12(1): 224
29 赵栋才, 任妮. 降低超硬类金刚石薄膜应力的方法 [J].真空与低温, 2006, 12(1): 224
30 SuY L, KaoW H. Tribological Behavior and Wear Mechanisms of TiN/TiCN/TiN multilayer Coatings [J]. Jmepeg,1998, 7(5): 601
31 SalgueiredoE, AlmeidaF A, AmaralM, et al. A multilayer approach for enhancing the erosive wear resistance of CVD diamond coatings [J]. Wear, 2013, 297(1): 1064
32 ShabaniM, SacramentoJ, OliveiraF J, et al. Multilayer CVD diamond coating in the machining of an Al6061-15Vol% Al2O3 Composite [J]. Coatings, 2017, 7(10):165
33 DengF M, ChenL, LiuC, et al. Study on the cutting properties of micro-nano- and micro/nano diamond coatings [J]. Diamond & Abrasives Engineering, 2015, 35(4): 1
33 邓福铭, 陈立, 刘畅等. 微米、纳米及微/纳米复合金刚石涂层的切削性能研究 [J]. 金刚石与磨料模具工程, 2015, 35(4): 1
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.