Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (11): 811-819    DOI: 10.11901/1005.3093.2018.317
  本期目录 | 过刊浏览 |
制备方法对Ni/Al2O3-SiC泡沫结构催化剂Ni分布和苯甲醛加氢性能的影响
李恺1,2, 矫义来1, 杨振明1, 张劲松1()
1 沈阳材料科学国家研究中心 中国科学院金属研究所 沈阳 110016
2 中国科学院大学 北京 100049
Effect of Preparation Methods on Ni-distribution and Catalytic Performance of Foam Structured Catalyst Ni/Al2O3-SiC for Hydrogenation of Benzaldehyde
Kai LI1,2, Yilai JIAO1, Zhenming YANG1, Jinsong ZHANG1()
1 Shenyang National Research Center for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

李恺, 矫义来, 杨振明, 张劲松. 制备方法对Ni/Al2O3-SiC泡沫结构催化剂Ni分布和苯甲醛加氢性能的影响[J]. 材料研究学报, 2018, 32(11): 811-819.
Kai LI, Yilai JIAO, Zhenming YANG, Jinsong ZHANG. Effect of Preparation Methods on Ni-distribution and Catalytic Performance of Foam Structured Catalyst Ni/Al2O3-SiC for Hydrogenation of Benzaldehyde[J]. Chinese Journal of Materials Research, 2018, 32(11): 811-819.

全文: PDF(7532 KB)   HTML
摘要: 

采用浸渍法和沉积-沉淀法制备了Ni为催化活性组分的Ni/Al2O3-SiC泡沫结构催化剂,使用扫描电镜能谱(SEM-EDS)、X射线衍射(XRD)、N2吸附-脱附、透射电镜(TEM)、X射线光电子能谱(XPS)和程序升温还原(H2-TPR)等手段表征结构催化剂,研究了活性组分制备方法对Ni分布、Ni颗粒尺寸、元素价态以及Ni与载体之间相互作用的影响,并考察了用不同方法制备的结构催化剂的苯甲醛液相加氢性能。结果表明,在40℃、160℃和真空冻干三种不同条件下干燥的浸渍型结构催化剂,在其涂层表面出现了不同程度的Ni富集,在160℃干燥的催化剂涂层表面Ni的富集最严重。与浸渍法相比,用沉积-沉淀法制备的结构催化剂其活性组分Ni的分布更均匀,Ni颗粒的尺寸更小,具有更高的苯甲醛加氢性能。

关键词 无机非金属材料催化材料结构催化剂Al2O3涂层Ni分布苯甲醛加氢    
Abstract

The foam structured catalysts of Ni/Al2O3-SiC were prepared via conventional impregnation (IM) and deposition-precipitation (DP) methods. These catalysts were characterized by means of scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), N2 absorption-desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The effect of preparation methods on the distribution, particle size and valence state of the active component Ni, as well as the interaction between Ni and the supporter was investigated. Furthermore, the catalytic performance of the catalysts prepared by different methods was evaluated for the liquid-phase hydrogenation of benzaldehyde. Results show that the Ni enrichment occurred on the coating surface of three catalysts prepared via impregnating and then dried in air at 40℃ and 160℃, as well as subjected to vacuum freeze-drying, respectively. The foam catalyst dried at 160℃ showed the most serious enrichment of Ni on the coating surface. Compared with the three impregnated foam catalysts, the catalyst prepared by DP method has a uniform Ni distribution and smaller Ni particles size, leading to its higher catalytic performance for hydrogenation of benzaldehyde.

Key wordsinorganic non-metallic materials    catalytic materials    structured catalysts    Al2O3 coating    Ni distribution    benzaldehyde hydrogenation
收稿日期: 2018-05-11     
ZTFLH:  TQ426  
基金资助:国家重点研发计划重点专项(2017YFB0310405)
作者简介:

作者简介 李恺,男,1985年生,博士生

图1  苯甲醛的选择加氢反应路径
图2  SiC泡沫陶瓷和Al2O3-SiC泡沫结构载体的SEM照片
图3  不同方法制备的Ni/A25S结构催化剂涂层横截面的SEM照片和涂层径向上的Ni分布
图4  不同方法制备的Ni/A25S结构催化剂涂层外表面的SEM照片和涂层外表面的Ni分布
图5  不同方法制备的结构催化剂的XRD图谱
Structured catalysts Ni loading a /% SBET /m2gfoam VBJH /cm3gfoam DBJH /nm dmb/nm
Ni/A25S (IM-40) 15.5 20.5 0.071 7.2 11
Ni/A25S (IM-160) 16.3 21.5 0.073 7.1 11.7
Ni/A25S (IM-Freeze) 16.1 20.1 0.07 7.4 11
Ni/A25S (DP) 15.7 19.2 0.067 7.5 10
表1  结构催化剂的物性参数
图6  不同方法制备的结构催化剂的TEM照片
图7  不同方法制备的结构催化剂中Ni 2p的XPS精细谱图
图8  不同方法制备的未活化催化剂的H2-TPR图谱
图9  不同方法制备的Ni/A25S结构催化剂的苯甲醛加氢性能
[1] Zhou F, Zhu Y C, Zhou Y H, et al.Performance of palladium catalysts with different supports for the hydrogenation of benzaldehyde[J]. Appl. Chem. Ind., 2013, 42: 606(周放, 朱玉超, 周永华等. 不同载体负载Pd催化剂的苯甲醛加氢性能[J]. 应用化工, 2013, 42: 606)
[2] Saadi A, Merabti R, Rassoul Z, et al.Benzaldehyde hydrogenation over supported nickel catalysts[J]. J. Mol. Catal., 2006, 253A: 79
[3] Liu W, Li Y R, Chen X L, et al.Catalytic hydrogenation of benzaldehyde on Ni/Al2O3 or Co-Ni/Al2O3 catalyst[J]. Asian J. Chem., 2013, 25: 1565
[4] Kong X J, Liu J H.Efficient hydrogenation of aromatic aldehydes to corresponding benzyl alcohols over Ni-B/MIL-101[J]. RSC Adv., 2014, 4: 33564
[5] Mironenko R M, Belskaya O B, Zaikovskii V I, et al.Effects of the carbon support nature and ruthenium content on the performances of Ru/C catalysts in the liquid-phase hydrogenation of benzaldehyde to benzyl alcohol[J]. Monatsh. Chem., 2015, 146: 923
[6] Li X H, Zheng W L, Pan H Y, et al.Pt nanoparticles supported on highly dispersed TiO2 coated on SBA-15 as an efficient and recyclable catalyst for liquid-phase hydrogenation[J]. J. Catal., 2013, 300: 9
[7] Pinna F, Menegazzo F, Signoretto M, et al.Consecutive hydrogenation of benzaldehyde over Pd catalysts: Influence of supports and sulfur poisoning[J]. Appl. Catal., 2001, 219A: 195
[8] Divakar D, Manikandan D, Kalidoss G, et al.Hydrogenation of benzaldehyde over palladium intercalated bentonite catalysts: Kinetic studies[J]. Catal. Lett., 2008, 125: 277
[9] Machado R M, Broekhuis R R, Nordquist A F, et al.Applying monolith reactors for hydrogenations in the production of specialty chemicals—process and economic considerations[J]. Catal. Today, 2005, 105: 305
[10] Pérez-Cadenas A F, Zieverink M M P, Kapteijn F, et al. High performance monolithic catalysts for hydrogenation reactions[J]. Catal. Today, 2005, 105: 623
[11] Cybulski A, Moulijn J A.Monoliths in heterogeneous catalysis[J]. Catal. Rev., 1994, 36: 179
[12] de Lathouder K M, Fló T M, Kapteijn F, et al. A novel structured bioreactor: Development of a monolithic stirrer reactor with immobilized lipase[J]. Catal. Today, 2005, 105: 443
[13] Vergunst T, Kapteijn F, Moulijn J A.Monolithic catalysts — Non-uniform active phase distribution by impregnation[J]. Appl. Catal., 2001, 213A: 179
[14] Zhao Y J, Zhou J, Zhang J G, et al.Preparation and characterization of Ru/Al2O3/cordierite monolithic catalysts for selective hydrogenation of benzene to cyclohexene[J]. Catal. Lett., 2009, 131: 597
[15] Lee S Y, Aris R.The distribution of active ingredients in supported catalysts prepared by impregnation[J]. Cat. Rev, 1985, 27: 207
[16] Lekhal A, Glasser B J, Khinast J G.Impact of drying on the catalyst profile in supported impregnation catalysts[J]. Chem. Eng. Sci., 2001, 56(15): 4473
[17] Villegas L, Masset F, Guilhaume N.Wet impregnation of alumina-washcoated monoliths: Effect of the drying procedure on Ni distribution and on autothermal reforming activity[J]. Appl. Catal., 2007, 320A: 43
[18] Xu X D, Vonk H, van de Riet A C J M, et al. Monolithic catalysts for selective hydrogenation of benzaldehyde[J]. Catal. Today, 1996, 30: 91
[19] Twigg M V, Richardson J T.Theory and applications of ceramic foam catalysts[J]. Chem. Eng. Res. Des., 2002, 80: 183
[20] Lucci F, Della Torre A, Montenegro G, et al.On the catalytic performance of open cell structures versus honeycombs[J]. Chem. Eng. J., 2015, 264: 514
[21] Zapico R R, Marín P, Díez F V, et al.Liquid hold-up and gas-liquid mass transfer in an alumina open-cell foam[J]. Chem. Eng. Sci., 2016, 143: 297
[22] Wei W, Cao X M, Tian C, et al.The influence of Si distribution and content on the thermoelectric properties of SiC foam ceramics[J]. Micropor. Mesopor. Mater., 2008, 112: 521
[23] Yang Z M, Tian C, Jiao Y L, et al.Preparation and applications of foam SiC[J]. Chem. React. Eng. Technol., 2013, 29: 269(杨振明, 田冲, 矫义来等. 泡沫碳化硅的制备及应用[J]. 化学反应工程与工艺, 2013, 29: 269)
[24] Meille V.Review on methods to deposit catalysts on structured surfaces[J]. Appl. Catal., 2006, 315: 1
[25] Luo N, Liu K X, Li X J, et al.Systematic study of detonation synthesis of Ni-based nanoparticles[J]. Chem. Eng. J., 2012, 210: 114
[26] Hou Z Y, Yokota O, Tanaka T, et al.Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2[J]. Appl. Catal., 2003, 253: 381
[27] Li C P, Chen Y W.Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: Effects of the preparation method[J]. Thermochim. Acta, 1995, 256: 457
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.