Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (4): 291-298    DOI: 10.11901/1005.3093.2018.297
  本期目录 | 过刊浏览 |
冷却速率对Al-20%Si合金Si相形貌及性能的影响
江峻1,黄诗鑫1,王连登2,张思彬1,朱定一1()
1. 福州大学材料科学与工程学院 福州 350108
2. 福州大学机械工程及自动化学院 福州 350108
Effect of Cooling Rate on Microstructure Evolution and Mechanical Property of Cast Al-20% Si Alloy
Jun JIANG1,Shixin HUANG1,Liandeng WANG2,Sibin ZHANG1,Dingyi ZHU1()
1. School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
2. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
引用本文:

江峻,黄诗鑫,王连登,张思彬,朱定一. 冷却速率对Al-20%Si合金Si相形貌及性能的影响[J]. 材料研究学报, 2019, 33(4): 291-298.
Jun JIANG, Shixin HUANG, Liandeng WANG, Sibin ZHANG, Dingyi ZHU. Effect of Cooling Rate on Microstructure Evolution and Mechanical Property of Cast Al-20% Si Alloy[J]. Chinese Journal of Materials Research, 2019, 33(4): 291-298.

全文: PDF(18147 KB)   HTML
摘要: 

使用高精度测温仪、金相显微镜(OM)和扫描电镜(SEM)等手段,研究了冷却速率、过冷度和再辉温度对Al-20%Si合金Si相形貌和性能的影响。结果表明:Al-20%Si合金初生Si的平均尺寸(D)与冷却速率(v)呈幂函数关系D=260.6v-3/4,而与再辉温度(Tm)则呈线性关系D=0.25Tm-143.12;降低初生Si生长的再辉温度,是控制晶粒长大的关键;铜模的高蓄热系数能持续降低初生Si的形核温度和再辉温度,使初生Si细小;初生Si由小平面生长转变为非小平面生长的临界过冷度为70 K,与理论计算结果(74 K)基本一致;随着冷却速率的增大、过冷度的增加和再辉温度的降低,Al-20%Si合金的凝固组织显著细化,合金的抗拉强度由167 MPa提高到210 MPa,延伸率则由2.14%提高到3.89%。

关键词 金属材料Al-20%Si合金冷却速率再辉温度Si相形貌力学性能    
Abstract

The effect of cooling rate, undercooling degree and recalescence temperature on the morphology of the primary Si-phase and the mechanical property of Al-20%Si alloy were investigated by means of high-precision thermometer, optical microscope (OM) and scanning electron microscopy (SEM). The results showed that the average size (D) of the primary Si in Al-20%Si alloy is a power function of the cooling rate (v) as D=260.6v-3/4, and linearly related to the recalescence temperature (Tm) as D=0.25Tm-143.12; Reducing the recalescence temperature of the primary Si growth was the key to control the grain growth, the copper mold with high thermal storage coefficient may be favourable to the sustainable reduction of the nucleation temperature and recalescence temperature of the primary Si, so that the primary Si size was small; The critical supercooling degree of 70 K was needed for the transformation of the primary Si growth from facet-like to non-facet-like ones, which is consistent with the theoretical calculation (74 K). With the increase of cooling rate and the undercooling degree, while the decrease of recalescence temperature, the solidified microstructure of Al-20%Si alloy was refined remarkably, correspondingly, the tensile strength of the Al-20%Si alloy increased from 167 MPa to 210 MPa and the elongation increased from 2.14% to 3.89 % respectively.

Key wordsmetallic materials    Al-20%Si alloy    cooling rate    faihui temperature    morphology of Si phase    mechanical properties
收稿日期: 2018-04-27     
ZTFLH:  TG146  
基金资助:国家国际科技合作专项(2015DFA71350)
作者简介: 江 峻,男,1992年生,研究生
图1  浇铸模具的示意图
图2  不同厚度的钢模冷却和铜模冷却Al-20%Si合金凝固后的形貌
图3  钢模冷却试件的凝固曲线
图4  铜模冷却试件的凝固曲线
Casting thickness of steel mold/mm

Cooling rate

/℃·s-1

Faihui temperature

/℃

Undercooling

/K

Average size of primary Si/μm
2018.37072933.5
1524.56883822.8
1038.16655217.6
573.26367012.2
表1  钢模冷却合金中的初生Si尺寸与过冷度、再辉温度、冷却速率的关系
Casting thickness of copper mold/mm

Cooling rate

/℃·s-1

Faihui temperature

/℃

Undercooling

/K

Average size of primary Si/μm
2033.86704318.3
15506565314.9
1082.66327510.6
5211.1606967.1
表2  铜模冷却合金中的初生Si尺寸与过冷度、再辉温度、冷却速率的关系
图5  初生Si平均尺寸与再辉温度之间的关系
图6  初生Si平均尺寸与冷却速率之间的关系
图7  不同厚度的钢模冷却和铜模冷却Al-20%Si合金深腐蚀后初生Si相的形貌
图8  在不同介质中冷却的Al-20%Si合金试件的抗拉强度和延伸率与厚度的关系
图9  钢模冷却和铜模冷却Al-20%Si合金拉的伸断口形貌
[1] ZhuH M. Application and development of key technologies for lightweight vehicle [J]. Applied Energy Technology, 2009, (2): 10
[1] (朱宏敏. 汽车轻量化关键技术的应用及发展 [J]. 应用能源技术, 2009(2): 10)
[2] HeardD W, DonaldsonI W, BishopD P. Metallurgical assessment of a hypereutectic aluminum-silicon P/M alloy [J]. Journal of Materials Processing Technology, 2009, 209(18): 5902
[3] WangA Q, ZhangL J, XieJ P. Effects of cerium and phosphorus on microstructures and properties of hypereutectic AI-21% Si alloy [J]. Journal of Rare Earths, 2013, 31(5): 522
[4] ZuoM, ZhaoD, TengX, et al. Effect of P and Sr complex modification on Si phase in hypereutectic Al-30Si alloys [J]. Materials&Design, 2013, 47(9): 857
[5] ShaM, WuS, ZhongG, et al. Variation of microstructure of RE-containing AlSi20Cu2Ni1RE0.6 alloy with different cobalt contents [J]. Journal of Alloys and Compounds, 2011, 509(2): 252
[6] YangZ R, PangS P, SunY, et al. Effect of modification and alloying on microstructure and wear properties of hypereutectic Al-20% Si alloys [J]. The Chinese Journal of Nonferrous Metals, 2013(05): 1217
[6] (杨子润, 庞绍平, 孙 瑜等. 变质及合金化对过共晶Al-20%Si合金组织及磨损性能的影响 [J]. 中国有色金属学报, 2013(5):1217)
[7] DangB, JianZ Y, ChangF E, et al. Effect of melt thermal treatment on the solidification behavior and structure of Al-25%Si alloy [J]. Sleep Medicine, 2015, 14: e232-e233
[8] SamuelA M, Garza-ElizondoG H, DotyH W, et al. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al-Si alloys [J]. Materials & Design, 2015, 80: 99
[9] ZhaoZ S, ZhaoA M. Microstructures and formation mechanism of spray deposited high silicon aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 815
[9] (甄子胜, 赵爱民. 喷射沉积高硅铝合金显微组织及形成机理 [J]. 中国有色金属学报, 2000, 10(6): 815)
[10] CuiC, SchulzA, SchimanskiK, et al. Spray forming of hypereutectic Al-Si alloys [J]. Journal of Materials Processing Technology, 2009, 209(11): 5220
[11] XieL C, PengC Q, WangR C, et al. Morphology and microstructure of rapidly solidified hypereutectic Al-Si alloy powder [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(1): 130
[11] (解立川, 彭超群, 王日初等. 快速凝固过共晶铝硅合金粉末的形貌与显微组织 [J]. 中国有色金属学报, 2014, 24(1): 130)
[12] DedyaevaE V, AkopyanT K, PadalkoA G, et al. High-pressure phase transitions and structure of Al-20 at% Si hypereutectic alloy [J]. Inorganic Materials, 2016, 52(10): 1077
[13] WangR Y, LuW H, HoganL M. Growth morphology of primary silicon in cast Al-Si alloys and the mechanism of concentric growth [J]. Journal of Crystal Growth, 1999, 207(1): 43
[14] CahnJ W, HilligW B, SearsG W. The molecular mechanism of solidification [J]. Acta Metallurgica, 1964, 14(12): 1421
[15] JianZ, KuribayashiK, JieW, et al. Solid-liquid interface energy of silicon [J]. Acta Materialia, 2006, 54(12): 3227
[16] LideD R. CRC Handbook of Chemistry and Physics [M]. CRC Press, Inc, 1989
[17] JianZ, KuribayashiK, JieW. Critical undercoolings for the transition from the lateral to continuous growth in undercooled silicon and germanium [J]. Acta Materialia, 2004, 52(11): 3323
[18] JianZ, YangX, ChangF, et al. Solid-liquid interface energy between silicon crystal and silicon-aluminum melt [J]. Metallurgical & Materials Transactions A, 2010, 41(7): 1826
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.