Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (4): 284-290    DOI: 10.11901/1005.3093.2018.441
  本期目录 | 过刊浏览 |
新型水性上浆剂对碳纤维及其复合材料界面性能的影响
郑帼1,2,3(),胡允杰1,3,周存2,3,吴波2,3,强永勤1,3
1. 天津工业大学环境与化学工程学院 天津 300387
2. 天津工业大学纺织学院 天津 300387
3. 天津市纺织纤维界面处理技术工程中心 天津 300270
Effect of a New Water-based Sizing Agent on Properties of Carbon Fibers and Their Composites
Guo ZHENG1,2,3(),Yunjie HU1,3,Cun ZHOU2,3,Bo WU2,3,Yongqin QIANG1,3
1. Department of Environmental and Chemical Engineering,Tianjin Polytechnic University,Tianjin 300387,China
2. School of Textiles,Tianjin Polytechnic University,Tianjin 300387,China
3. Tianjin Engineering Research Center of Textile Fiber Interface Treatment Technology,Tianjin 300270,China
引用本文:

郑帼,胡允杰,周存,吴波,强永勤. 新型水性上浆剂对碳纤维及其复合材料界面性能的影响[J]. 材料研究学报, 2019, 33(4): 284-290.
Guo ZHENG, Yunjie HU, Cun ZHOU, Bo WU, Yongqin QIANG. Effect of a New Water-based Sizing Agent on Properties of Carbon Fibers and Their Composites[J]. Chinese Journal of Materials Research, 2019, 33(4): 284-290.

全文: PDF(4925 KB)   HTML
摘要: 

使用新型水性上浆剂O3PPA对碳纤维表面进行改性处理,使用聚己内酰胺树脂为基体制备碳纤维/聚己内酰胺树脂复合材料,使用X射线光电子能谱仪(XPS)、扫描电镜(SEM)、纤维强伸度仪(XQ-1A)、万能材料试验机等手段表征改性后的碳纤维和碳纤维/聚己内酰胺树脂复合材料。结果表明,O3PPA的最佳上浆质量分数和吸附量分别为1%和5 mg/g。经O3PPA处理的碳纤维单丝的断裂强度提高了12%,碳纤维短丝在聚己内酰胺树脂中的分散性明显提高。而经O3PPA处理的碳纤维/聚己内酰胺树脂复合材料,其弯曲强度和层间剪切强度比未处理分别提高了35%和46%。

关键词 无机非金属材料纤维材料水性上浆剂聚己内酰胺基复合材料力学性能    
Abstract

The surface of carbon fibers was firstly modified with a new water borne sizing agent O3PPA, and then composites of the modified carbon fibers/ polycaprolactam resin were prepared with polycaprolactam resin as matrix. The above prepared products were characterized by means of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), fiber strength extensometer and universal material testing machine. The results show that the optimum mass fraction and adsorption capacity of O3PPA were 1% and 5mg·g-1 respectively. The fracture strength of the O3PPA modified carbon fiber monofilament increased by 12% and the dispersibility of short carbon fibers in polycaprolactam resin was significantly improved. Furthermore, the flexural strength and interlaminar shear strength of the modified carbon fibers/polycaprolactam resin composite increased by 35% and 46% respectively compared with those of plain carbon fibers/polycaprolactam resin composite.

Key wordsinorganic non-metallic materials    fiber material    water sizing agent    polycaprolactam matrix composites    mechanical property
收稿日期: 2018-07-10     
ZTFLH:  TQ323.6  
基金资助:国家重点研发计划(2016YFB0303200);中石化项目(217010-2);中石化项目(217010-4)
作者简介: 郑 帼,女,1957年生,教授
图1  乳液浓度对O3PPA乳液表面张力及碳纤维接触角的影响
SampleElement content (atom fraction, %)
CONP
CF77.7215.013.580.00
CF-O3PPA67.0021.022.594.10
表1  改性前后碳纤维表面的元素组成
图2  改性前后碳纤维的XPS C1s峰谱图
图3  O3PPA改性前后碳纤维表面的FE-SEM图
图4  O3PPA改性前后碳纤维的的接触角
图5  碳纤维与聚己内酰胺树脂接触角的简化计算模型
图6  O3PPA上浆剂施覆量对碳纤维分散系数的影响
图7  改性前后碳纤维的单丝断裂强度
图8  改性前后碳纤维短丝/聚己内酰胺树脂的弯曲强度
图9  改性前后碳纤维布/聚己内酰胺树脂的剪切强度
[1] WuB. Surface Modification and Composite Properties of Polyacrylonitrile Based Carbon Fibers [D]. Tianjin: Tianjin Polytechnic University, 2017
[1] (吴 波. 聚丙烯腈基碳纤维的表面修饰及复合性能研究 [D]. 天津: 天津工业大学, 2017)
[2] ShuiX Y. Preparation and properties of carbon fibre waterborne sizing agent applied to thermoplastic matrix [D]. Hangzhou: Zhejiang Sci-Tech University, 2016
[2] (水兴瑶. 应用于热塑性基体的碳纤维水性上浆剂的制备及性能研究 [D]. 杭州: 浙江理工大学, 2016)
[3] CarrilloJ. G., GamboaR. A., Flores-JohnsonE. A., et al. Ballistic performance of thermoplastic composite laminates made from aramid woven fabric and polypropylene matrix [J]. Polymer Testing, 2012, 31(4)
[4] DuS Y. Advanced composite materialsand Aeronautics andAstronautics [J]. Acta Materiae Compositae Sinica, 2007(01): 1
[4] (杜善义. 先进复合材料与航空航天 [J]. 复合材料学报, 2007(01): 1)
[5] ZhiweiXu, YudongHuang, ChunhuaZhang, et al. Effect of γ-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites [J]. Composites Science and Technology, 2007, 67(15)
[6] SooJ P, ByungJ K. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior [J]. Materials Science & Engineering A, 2005, 408(1)
7 MaK, WangB, ChenP, et al. Plasma treatment of carbon fibers: Non-equilibrium dynamic adsorption and its effect on the mechanical properties of RTM fabricated composites [J]. Applied Surface Science, 2011, 257(9)
[8] YangH B, WangJ, WuH M, et al. Effect of silica sol modificationon tensile properties of carbon fiber /Epoxy Composites [J]. Chinese Journal of Materials Research, 2013, 27(01): 108
[8] (杨洪斌, 王 靖, 吴惠敏等. 硅溶胶改性处理对碳纤维/环氧树脂复合材料拉伸性能的影响 [J]. 材料研究学报, 2013, 27(01): 108)
[9] ZhangX Q, FanX Y, YanC, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. [J]. ACS Applied Materials and Interfaces, 2012, 4(3)
[10] LiuZ Q. Synthesis of epoxy modified waterborne polyurethane and its application in sizing agent of carbon fibre [D]. Beijing University of Chemical Technology, 2012
[10] (刘占清. 环氧改性水性聚胺酯的合成及其在碳纤维上浆剂中的应用 [D]. 北京化工大学, 2012)
[11] LiJ L, TianY H, ZhangX J. Carbon fiber adhesive acrylic-epoxycomposite emulsion and itsapplication [J]. Acta Materiae Compositae Sinica, 2014, 31(02): 518
[11] (李金亮, 田艳红, 张学军. 碳纤维上胶剂丙烯酸酯-环氧复合乳液及应用 [J]. 复合材料学报, 2014, 31(02): 518)
[12] KMimura, HIto. Characteristics of epoxy resin cured with in situ polymerized curing agent [J]. Polymer, 2002, 43(26)
[13] RenH, SunJ Z, WuB J, et al. Synthesis and characterization of a novel epoxy resin containing naphthyl/dicyclopentadiene moieties and its cured polymer [J]. Polymer, 2006, 47(25)
[14] ZhangR L, HuangY D, SuD, et al. Influence of sizing molecular weight on the properties of carbon fibers and its composites [J]. Materials and Design, 2011, 34
[15] YiY, YeF, HuangC, et al. Study on synthesis of polyurethane‐epoxy composite emulsion [J]. Journal of Applied Polymer Science, 2010, 115(1)
[16] NerinaA. Camino, OscarE. Pérez, Cecilio CarreraSanchez, et al. Hydroxypropylmethylcellulose surface activity at equilibrium and adsorption dynamics at the air-water and oil-water interfaces [J]. Food Hydrocolloids, 2009, 23(8)
[17] GorenS L. The shape of a thread of liquid undergoing break-up [J]. Journal of Colloid Science, 1964, 19(1): 81
[18] CarrollB J. The accurate measurement of contact angle,plase contact areas, drop volume,and Laplace excess pressure in drop-on -fibre systems [J]. Journal of Colloid and Interface Science, 1976, 57(3): 488
[19] VautardF, FiouxP, VidalL, et al.Influence of the carbon fiber surface properties on interfacial adhesion in carbon fiber-acrylate composites cured by electron beam[J]. Composites Part A Applied Science & Manufacturing, 2011, 42(7): 859
[20] WeiS, GuA, LiangG, et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites [J]. Applied Surface Science, 2011, 257(257): 4069
[21] SunH, GuoG, MemonS A, et al. Recycling of carbon fibers from carbon fiber reinforced polymer using electrochemical method [J]. Composites Part A Applied Science & Manufacturing, 2015, 78: 10
[22] WangC, LiK Z, LiH J, et al. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites [J]. Materials Science & Engineering A, 2007, 487(1)
[23] ArmandaViksne, LigitaRence, MartinsKalnins, et al. The effect of paraffin on fiber dispersion and mechanical properties of polyolefin-sawdust composites [J]. Journal of Applied Polymer Science, 2004, 93(5)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[8] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[9] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.