Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (3): 177-184    DOI: 10.11901/1005.3093.2018.252
  本期目录 | 过刊浏览 |
电化学刻蚀参数对高阻厚壁宏孔硅阵列表面形貌的影响
安欢1,伍建春1,张仲1,王欢1,孙华2,展长勇1(),邹宇1()
1. 四川大学原子核科学技术研究所 辐射物理及技术教育部重点实验室 成都 610064
2. 苏州大学物理学院 苏州 215006
Effect of Electrochemical Etching Parameters on Surface Morphology of Thick-walled Macroporous Silicon Array
Huan AN1,Jianchun WU1,Zhong ZHANG1,Huan WANG1,Hua SUN2,Changyong ZHAN1(),Yu ZOU1()
1. Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
2. College of Physics, Soochow University, Suzhou 215006, China
引用本文:

安欢,伍建春,张仲,王欢,孙华,展长勇,邹宇. 电化学刻蚀参数对高阻厚壁宏孔硅阵列表面形貌的影响[J]. 材料研究学报, 2019, 33(3): 177-184.
Huan AN, Jianchun WU, Zhong ZHANG, Huan WANG, Hua SUN, Changyong ZHAN, Yu ZOU. Effect of Electrochemical Etching Parameters on Surface Morphology of Thick-walled Macroporous Silicon Array[J]. Chinese Journal of Materials Research, 2019, 33(3): 177-184.

全文: PDF(15327 KB)   HTML
摘要: 

采用光电化学刻蚀方法,在电阻率为4~5 kΩ·cm的n-型[100]单晶硅片上制备了厚壁有序宏孔硅阵列。通过对比有限元法模拟诱导坑周围的电场分布,研究了刻蚀参数(电解液、光照、电压)对阵列表面形貌的影响。在刻蚀成孔的过程中,诱导坑对孔的限制受电场分布和实验条件的共同影响,出现刻蚀偏离的现象。模拟结果显示,诱导坑上的电场强度沿着单晶硅的[100]和[110]晶向的分布。这种分布的结果是,随着光照强度的提高和刻蚀溶液表面自由能的降低刻蚀由原光刻图形的(110)面向(100)面偏离。提高刻蚀电压可抑制刻蚀偏离,有利于诱导坑快速刻蚀成孔,从而形成规整的厚壁宏孔硅阵列。

关键词 无机非金属材料宏孔硅阵列光电化学刻蚀法表面形貌COMSOL multiphysics 多物理场仿真软件    
Abstract

Thick-walled macroporous silicon arrays (MSA) were fabricated on n-type monocrystalline silicon wafer with resistivity 4~5 kΩ·cm by photo-electrochemical etching in HF solutions. The surface and cross-sectional morphologies of the MSA were assessed by scanning electron microscope. The electric field distribution around the prefabricated pits were simulated by finite element method. By comparing with the simulation, the evolution of surface morphology of the prepared MSA was studied with the changing process parameters such as electrolyte, illumination, and applied voltage. During the etching process, deviations are found for the macropores despite of that there existed a restriction resulted from the prefabricated pits. This is due to the comprehensive effect of electric field distribution and etching parameters. The simulation results show that the electric field distribution on the prefabricated pits is featured by shapes along silicon orientation [100] and [110] at different values. Due to the existence of the above favorable influence factor, the etching face may tend to change from (110) to (100), in case that the illumination increases, while the surface free energy of the etching electrolyte decreases, which may be resulted from the stimulation of additives ethanol and hexadecyl trimethyl ammonium chloride (CTAC). Therefore, the increase of the applied voltage can restrain the etching deviation, which is conducive to rapidly transform the prefabricated pits into pores, hence, to promote the formation of thick-walled macroporous silicon array.

Key wordsinorganic non-metallic materials    macroporous silicon array    photo-electrochemical etching    surface morphology
收稿日期: 2018-04-04     
ZTFLH:  TN303  
基金资助:国家自然科学基金(11405111)
作者简介: 安 欢,女,1993年生,硕士生
图1  诱导坑的扫描电子显微镜照片和COMSOL模拟的诱导坑的三维模型
图2  COMSOL模拟的应用电场等势面的侧视图、截面图和顶部视图
图3  在不同光照强度条件下制备的宏孔硅阵列的表面和断面形貌
图4  在溶液中CTAC含量不同的条件下制备的宏孔硅阵列的表面和断面形貌
图5  在电压不同的条件下制备的宏孔硅阵列的表面和断面形貌
图6  在电压不同的条件下制备的宏孔硅阵列的表面和断面形貌
Electrochemical etching parameters

Lamp voltages in HF/H2O/Ethanol

/V

CTAC contents

/g

Applied voltages in HF/H2O

/V

Applied voltages in

HF/H2O/Ethanol

/V

01402350.070.11.852.41.21.52
Pore wall thickness/μm2235272314384217.21313.3
表1  在电化学刻蚀参数不同的情况下制备的宏孔硅阵列的孔壁厚度
[1] LehmannV. The physics of macropore formation in low doped n-type silicon [J]. J. Electrochem. Soc., 1993, 140(10): 2836
[2] LinnorsJ, BadelX, KleimannP. Macro pore and pillar array formation in silicon by electrochemical etching [J]. Phys. Scr., 2006(1): 72
[3] SchmidtT, ZhangM, YuS, et al. Fabrication of ultra-high aspect ratio silicon nanopores by electrochemical etching [J]. Appl. Phys. Lett., 2014, 105(12): 14
[4] AbdidiD, RomdhaneS, BrunetbruneauA, et al. Microstructural characterization of porous silicon for use in optoelectronic devices [J]. Eur. Phys. J. Appl. Phys., 2009, 45(1): 10601
[5] SavioR L, GalliM, LiscidiniM, et al. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide [J]. Appl. Phys. Lett., 2014, 104(12): 19
[6] KumarA, KumarA, ChandraR. Fabrication of porous silicon filled Pd/SiC nanocauliflower thin films for high performance H2 gas sensor [J]. Sens. Actuators. B., 2018, 264: 10
[7] HarrazF A. Porous silicon chemical sensors and biosensors: A review [J]. Sens.Actuators. B. Chem., 2014, 202(10): 897
[8] SangerA, KumarA, ChauhanS, et al. Fast and reversible hydrogen sensing properties of Pd/Mg thin film modified by hydrophobic porous silicon substrate [J]. Sens.Actuators. B. Chemical, 2015, 213: 252
[9] IsmailM M, RasheedB G, Al-HamdaniA H, et al. Photovoltaic properties enhancement of solar cell based on porous silicon [J]. Optik., 2017, 138(2): 359
[10] KooijE S, RamaA R, KellyJ J. Infrared induced visible emission form porous silicon: the mechanism of anodic oxidation [J]. Surf. Sci., 2017, 370(2): 125
[11] LehmannV, G?seleU. Porous silicon formation: A quantum wire effect [J]. Appl. Phys. Lett., 1991, 58(8): 856
[12] LehmanV, F?llH. Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon [J]. J. Electrochem. Soc., 1990, 137(137): 653
[13] CarstensenJ, ChristophersenM, HasseG, et al. Parameter Dependence of Pore Formation in Silicon within a Model of Local Current Bursts [J]. Phys. Status. Solidi., 2000, 182(1): 63
[14] CarstensenJ, ChristophersenM, F?llH. Pore formation mechanisms for the Si-HF system [J]. Mater. Sci. Eng. B., 2000, s69-70: 23
[15] McgregorD S, BellingerS L, ShultisJ K. Present status of microstructured semiconductor neutron detectors [J]. J. Cryst. Growth., 2013, 379(5): 99
[16] ParkerS, UherJ, Fr?jdhC, Jak?bekJ, et al. Characterization of 3D thermal neutron semiconductor detectors [J]. Nucl. Instrum. Methods Phys. Res., 2007, 576(1): 32
[17] BaderX, LinneosJ, KleimannP, et al. Metallized and oxidized silicon macropore arrays filled with a scintillator for CCD-based X-ray imaging detectors [J]. IEEE. T. Nucl. Sci., 2004, 51(3): 1001
[18] LeiY H, LiuX, GuoJ C, ZhaoZ G. Development of x-ray scintillator functioning also as an analyser grating used in grating-based x-ray differential phase contrast imaging [J]. Chin. Phys. B., 2011, 20(4): 222
[19] KleimannP, BadelX, LinnrosJ. Toward the formation of three-dimensional nanostructures by electrochemical etching of silicon [J]. Appl. Phys. Lett., 2005, 86(18): 1187
[20] KleimannP, LinnrosJ, PeterssonS. Formation of wide and deep pores in silicon by electrochemical etching [J]. Mater. Sci. Eng. B., 2000, 69: 29
[21] BadelX, KumarR R. Formation of ordered pore arrays at the nanoscale by electrochemical etching of n-type silicon [J]. Superlattice Microst., 2004, 36(1): 245
[22] ZhanC Y, ZouY, JiangW, et al. Study of electrical current reconstruction on macropore arrays etched electrochemically on lightly-doped n-Si [J]. Appl. Surf. Sci., 2016, 362: 538
[23] JiangW, ZouY, WuJ C, et al. Effects of solution composition on morphology of macropore arrays etched by electrochemical etching on high ρ n-Si [J]. J. Funct. Mater., 2013, 44(15): 2222.
[23] (蒋 稳, 邹 宇, 伍建春等. (腐蚀液配方对刻蚀高阻硅多孔阵列结构形貌影响的研究 [J]. 功能材料, 2013, 44(15): 2222)
[24] ParkJ, YanagidaY, HatsuzawaT. Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources [J]. Sens. Actuators. B. Chemical, 2016, 233: 136
[25] ZhangH, LiY, ChenH, et al. Perceptual Contrast Enhancement with Dynamic Range Adjustment [J]. Optik, 2013, 124(23): 5906
[26] ChenT T, GuD, YuH N, et al. Morphology study of electrochemically etched silicon pore array [J]. Electron. Compos. Mater., 2015, 34(11): 48
[26] (陈婷婷, 顾 牡, 于怀娜等. (电化学刻蚀多孔硅阵列的形貌研究 [J]. 电子元件与材料, 2015, 34(11):48)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.