Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (11): 867-873    DOI: 10.11901/1005.3093.2017.710
  本期目录 | 过刊浏览 |
球形多孔氮化钒的制备及其电化学性能
高兆辉(), 迟建卫, 唐茂勇, 汪彦军, 徐建萍
大连海洋大学理学院 大连 116023
Synthesis and Electrochemical Performance of Spherical Porous Vanadium Nitride
Zhaohui GAO(), Jianwei CHI, Maoyong TANG, Yanjun WANG, Jianping XU
School of Science, Dalian Ocean University, Dalian 116023, China
引用本文:

高兆辉, 迟建卫, 唐茂勇, 汪彦军, 徐建萍. 球形多孔氮化钒的制备及其电化学性能[J]. 材料研究学报, 2018, 32(11): 867-873.
Zhaohui GAO, Jianwei CHI, Maoyong TANG, Yanjun WANG, Jianping XU. Synthesis and Electrochemical Performance of Spherical Porous Vanadium Nitride[J]. Chinese Journal of Materials Research, 2018, 32(11): 867-873.

全文: PDF(1871 KB)   HTML
摘要: 

以CTAB为模板剂采用喷雾干燥法制备球形多孔V2O5前驱体,再进行氨气还原氮化处理制备出球形多孔VN材料。使用X射线衍射、扫描电子显微镜、透射电子显微镜和N2吸附-脱附等手段表征其结构并进行了循环伏安和恒流充放电测试,研究了材料的电化学性能。结果表明,这种材料为立方晶系晶体结构,呈球形颗粒状,有丰富的介孔,比表面积为120 m2·g-1。循环伏安测试结果表明,球形多孔VN电极同时具有双电层电容特性和赝电容特性,电流密度为100 mA·g-1时其比电容约为513 F·g-1,进行5000次充放电循环后其比电容保持率为76.8%,功率密度为590 W·kg-1时能量密度为65.0 W·h·kg-1,而功率密度为3260 W·kg-1时能量密度为24.17 W·h·kg-1

关键词 无机非金属材料超级电容器电化学球形多孔VN    
Abstract

Spherical porous VN materials were synthesized by a facile NH3 reduction method with spherical V2O5 as the precursor,while the spherical V2O5 was prepared via soft template method and spray drying technology. The structure, morphology and electrochemical performance of the prepared VN were characterized by means of XRD,SEM,TEM,and N2 adsorption-desorption analysis, as well as cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the synthesized spherical porous VN powder presents cubic crystallographic structure with abundant mesopores,and its specific surface area is 120 m2·g-1. In addition, the spherical porous VN powder presents characteristics both in electrical double-layer capacitance and redox pseudo-capacitance . Its specific capacitance is 513 F·g-1 by current density of 100 mA·g-1,and which remained 76.8% even after 5000 cycles. For power density is 590 W·kg-1,its energy density is 65.0 W·h·kg-1. When the power density was 3260 W·kg-1,the energy density was as high as 24.17 W·h·kg-1.

Key wordsinorganic non-metallic materials    supercapacitors    electrochemistry    spherical porous VN
收稿日期: 2017-12-01     
ZTFLH:  O646  
基金资助:中央财政支持地方高校发展专项资金(500217201010)和辽宁省自然科学基金指导计划项目(20170540109)
作者简介:

作者简介 高兆辉,男,1980年生,博士

图1  V2O5前驱体和球形多孔VN的X射线衍射图谱
图2  V2O5前驱体和球形多孔VN的SEM照片、球形多孔VN的TEM照片以及EDS谱图
图3  V2O5前驱体和球形多孔VN的N2等温吸附曲线和孔径分布曲线
图4  球形多孔VN在不同扫描速率条件下的循环伏安曲线、在不同电流密度条件下的恒流充放电曲线、在不同扫描速率条件下的比电容曲线、循环寿命曲线、交流阻抗曲线、能量密度和功率密度曲线
图5  球形多孔VN的XPS谱图
[1] Conway B E.Transition from supercapacitor to battery behavior in electrochemical energy-storage[J]. J. Electrochem. Soc., 1991, 138(6): 1539
[2] Zheng J P, Jow T R.A new charge storage mechanism for electrochemical capacitors[J]. J. Electrochem. Soc., 1995, 142(1): L6
[3] Miller J R, Burke A F.Electrochemical capacitors: Challenges and opportunities for real-world applications[J]. Electrochem. Soc. Interface, 2008, 17(1): 53
[4] Miller J R, Simon P.Materials science―Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651
[5] Lam L T, Louey R.Development of ultra-battery for hybrid-electric vehicle applications[J]. J. Power Sources, 2006, 158(2): 1140
[6] Zhu D Z, Wang Y W, Gan L H, et al.Nitrogen-containing carbon microspheres for supercapacitor electrodes[J]. Electrochim. Acta, 2015, 158: 166
[7] Cheng J, Cao G P, Yang Y S.Characterization of sol-gel-derived NiOx xerogels as supercapacitors[J]. J. Power Sources, 2006, 159(1): 734
[8] Lee H Y, Goodenough J B.Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution[J]. J. Solid State Chem., 1999, 148(1): 81
[9] Ragupathy P, Park D H, Campet G, et al.Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor[J]. J. Phys. Chem. C, 2009, 113(113): 6303
[10] Feng Z P, Li G R, Zhong J H, et al.MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties[J]. Electrochem. Commun., 2009, 11(3): 706
[11] Zhang H, Cao G P, Wang Z Y, et al.Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage[J]. Nano Lett., 2008, 8(9): 2664
[12] Choi D, Kumta P N.Chemically synthesized nanostructured VN for pseudocapacitor application[J]. Solid-State Lett., 2005, 8(8): A418
[13] Choi D, Blomgren G E, Kumta P N.Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors[J]. Adv. Mater., 2006, 18(9): 1178
[14] Wen Z H, Cui S M, Pu H H, et al.Metal nitride/graphene nanohybrids: general synthesis and multifunctional titanium nitride/graphene electrocatalyst[J]. Adv. Mater., 2011, 23(45): 5445
[15] Dong S M, Chen X, Gu L, et al.Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage[J]. ACS Appl. Mater. Interfaces, 2011, 3(1): 93
[16] Zhou X P, Chen H Y, Shu D, et al.Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material[J]. J. Phys. Chem. Solids, 2009, 70(2): 495
[17] Glushenkov A M, Hulivova-Jurcakova D, Llewellyn D, et al.Structure and capacitive properties of porous nanocrystalline VN produced by NH3 reduction of V2O5[J]. Chem. Mater., 2010, 22(3): 914
[18] Cheng F K, He C, Shu D, et al.Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior[J]. Mater. Chem. Phys., 2011, 131(1-2): 268
[19] Shu D, Lv C J, Cheng F K, et al.Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors[J]. Int. J. Electrochem. Sci., 2013, 8(1): 1209
[20] Zhao J X, Liu B, Xu S, et al.Fabrication and electrochemical properties of porous VN hollow nanofibers[J]. J. Alloys Compd., 2015, 651: 785
[21] Gao B, Li X X, Guo X L, et al.Nitrogen-Doped Carbon Encapsulated Mesoporous Vanadium Nitride Nanowires as Self-Supported Electrodes for Flexible All-Solid-State Supercapacitors[J]. Adv. Mater. Interfaces, 2015, 2(13): DOI: 10.1002/admi.201500211.
[22] Bi W T, Hu Z P, Li X G, et al.Metallic mesocrystal nanosheets of vanadium nitride for high-performance all-solid-state pseudocapacitor[J]. Nano Res., 2015, 8(1): 193
[23] Dong S M, Chen X, Gu L, et al.TiN/VN composites with core/shell structure for supercapacitors[J]. Mater. Res. Bull., 2011, 46(6): 835
[24] Zhou X H, Shang C Q, Gu L, et al.Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors[J]. ACS Appl. Mater. Inter., 2011, 3(8): 3058
[25] Achour A, Lucio-Porto R, Chaker M, et al.Titanium Vanadium Nitride Electrode For Micro-Supercapacitors[J]. Electrochem. Commun., 2017, 77: 40
[26] Liu Y, Liu L Y, Kong L B, et al.Supercapacitor electrode based onnano-vanadium nitride incorporated on porous carbon nanospheres derived from ionic amphiphilic block copolymers & vanadium-contained ion assembly systems[J]. Electrochim. Acta, 2016, 211: 469
[27] Yang Y L, Shen K W, Liu Y, et al.Novel Hybrid Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical Supercapacitor[J]. Nano-Micro Lett., 2017, 9(1): 6
[28] Pang H C, Ee S J, Dong Y Q, et al.TiN@VN nanowire arrays on 3D carbon for high performance supercapacitors[J]. ChemElectroChem., 2014, 1(6): 1027
[29] Zhang L, Holt C M B, Luber E J, et al. High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes[J]. J. Phys. Chem. C, 2011, 115(49): 24381
[30] Balamurugan J, Karthikeyan G, Thanh T D, et al.Facile synthesis of vanadium nitride/nitrogen-doped grapheme composite as stable high performance anode materials for supercapacitors[J]. J. Power Sources, 2016, 308(3): 149
[31] Xiao X, Peng X, Jin H Y, et al.Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible All-Solid-State Supercapacitors[J]. Adv. Mater., 2013, 25(36): 5091
[32] Lu X H, Yu M H, Zhai T, et al.High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode[J]. Nano Lett., 2013, 13(6): 2628
[33] Eustache E, Frappier R, Porto R L, et al.Asymmetric electrochemical capacitor microdevice designed with vanadium nitride and nickel oxide thin film electrodes[J]. Electrochem. Commun., 2013, 28(28): 104
[34] Yang Y L, Zhao L, Shen K W, et al.Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage[J]. J. Power Sources, 2016, 333: 61
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.