Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (10): 721-729    DOI: 10.11901/1005.3093.2017.597
  研究论文 本期目录 | 过刊浏览 |
氨基化氧化石墨烯在水性防腐防火一体化涂料中的应用
王娜(), 陈俊声, 王树伟, 张静()
沈阳化工大学材料科学与工程学院 沈阳 110142
Application of Aminated Graphite Oxide for Waterborne Anti-corrosion and Fireproof Coatings
Na WANG(), Junsheng CHEN, Shuwei WANG, Jing ZHANG()
School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
引用本文:

王娜, 陈俊声, 王树伟, 张静. 氨基化氧化石墨烯在水性防腐防火一体化涂料中的应用[J]. 材料研究学报, 2018, 32(10): 721-729.
Na WANG, Junsheng CHEN, Shuwei WANG, Jing ZHANG. Application of Aminated Graphite Oxide for Waterborne Anti-corrosion and Fireproof Coatings[J]. Chinese Journal of Materials Research, 2018, 32(10): 721-729.

全文: PDF(4902 KB)   HTML
摘要: 

用Hummers法制备氧化石墨烯(GO),并用乙二胺对氧化石墨烯(GO)进行氨基化得到氨基化氧化石墨烯(NGO),将季戊四醇磷酸酯(PEPA)、三聚磷酸铝(ATP)与NGO三者复配并添加到水性环氧树脂中,制备出水性环氧防腐防火一体化涂料。使用IR、XRD、SEM等手段对GO和NGO的结构和形貌进行了表征。结果表明,已经制备出GO并成功地对其表面实现了氨基化改性。电化学测试、盐雾试验、耐火极限测试、残炭形貌分析和热失重分析的结果表明,颜基比P/B=0.2的复合涂层具有最佳的防腐性能和防火性能。

关键词 材料失效与保护水性环氧树脂电化学阻抗谱氨基化氧化石墨烯防腐防火涂料    
Abstract

The graphene oxide (GO) was prepared by the Hummers method, and then modified with ethylenediamine to obtain aminated graphene oxide (NGO). The anti-corrosion and fire-proof waterborne epoxy composite coating was prepared by adding pentaerythritol phosphate (PEPA), aluminum triphosphate (ATP) and NGO to the waterborne epoxy resin, and then applied on the surface of steel sheet by air spraying method. The structure and morphology of GO and NGO were characterized by IR, XRD and SEM. The performance in anti-resistance and fire-proof resistance of the prepared coatings with different color ratios (pigment/resin ratio: P/B) was further investigated by means of electrochemical test, salt spray test, fire resistance test, residual carbon morphology analysis and thermogravimetric analysis. The results show that the composite coating with the P/B ratio of 0.2 presents the best comprehensive performance in anti-resistance and fire-proof.

Key wordsmaterials failure and protection    waterborne epoxy resin    chemical impedance spectroscopy    aminated graphene oxide    anti-corrosion and fire-retardant coating
收稿日期: 2017-11-01     
ZTFLH:  TB304  
基金资助:辽宁省百千万人才工程([2017]62),辽财指高端人才([2016]864),沈阳市科技计划(17-51-6-00)
作者简介:

作者简介 王娜,女,1977年生,教授

图1  GO与乙二胺反应的机理图
Sample No. EP/g Component/g Curing agent/g H2O/g
EP0 10 / 2.5 2.5
EP1 10 1.5 2.5 2.5
EP2 10 2.0 2.5 2.5
EP3 10 2.5 2.5 2.5
EP4 10 3.0 2.5 2.5
表1  水性环氧复合涂料的配方
图2  GO和NGO红外光谱
图3  GO和NGO的XRD图
图4  GO和NGO的SEM图片
图5  涂层的奈奎斯特图
图6  涂层的阻抗随时间的变化图
图7  涂层的防腐机理
图8  涂层的极化曲线
Sample ba bc Icoor/A·cm-2 Rp/Ω·cm 2 CR/mm·y-1 PEF/%
EP0 2.31×10-1 1.25×10-1 5.87×10-5 5.99×102 6.82×10-1 /
EP1 3.06×10-1 2.17×10-1 1.10×10-6 5.03×104 1.28×10-2 82.97
EP2 2.56×10-1 2.38×10-1 8.23×10-9 6.51×106 9.57×10-5 1.09×104
EP3 1.35×10-1 2.10×10-1 1.37×10-5 2.61×103 1.59×10-1 3.36
EP4 1.00×10-1 2.49×10-1 2.58×10-5 1.20×103 2.99×10-1 1.00
表2  涂层的极化曲线拟合数据
图9  复合涂层EP1、EP2、EP3、EP4样片上的锈斑
图10  钢板背温随时间的变化
图11  耐火实验后涂层表面形貌
图12  涂层的残炭扫描图
图13  试样的TG曲线
Sample No. T20/℃ T70/℃ W800/%
EP0 355.90 399.60 10.78
EP1 314.22 399.79 18.98
EP2 315.59 517.50 24.83
EP3 314.40 422.98 21.09
EP4 314.59 389.17 13.73
表3  复合涂料的TG数据
[1] Wang D, Zhang H, Wang H J, et al.Preparation and performance study of a solvent free epoxy intumescent fire retardant coating for fire resistance to hydrocarbons[J]. Pain. Coat. Ind., 2010, 40(9): 41(王丹, 张晖, 王华进等. 户外耐烃类火灾无溶剂环氧膨账型防火涂料的制备及性能研究[J]. 涂料工业, 2010, 40(9): 41)
[2] Cui S W, Yin X Y, Yu Q L, et al.Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light[J]. Corros. Sci., 2015, (98): 471
[3] Wang Z Y, Han E H, Ke W.Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings[J]. Corros. Sci., 2007, 49(5): 2237
[4] Wang W J, Yang J Y.Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure[J]. Surf. Coat. Tech., 2010, 204(8): 1186
[5] Noorden. R. V.Moving towards a graphene world[J]. Nature, 2006, 442(7100): 228
[6] Yu Z X, Di H H, Ma Y, et al.Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings[J]. Surf. Coat. Tech., 2015, (276): 471
[7] Liu X W, Wu W H, Qi Y X.Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin[J]. J. Therm. Anal. Calorim., 2016, 126(2): 553
[8] He Q Y, Herry Gunadi Sudibya, Yin Z Y, et al.Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications[J]. ACS Nano, 2010, 4(6): 3201
[9] Shen J F, Huang W S, Wu L P, et al.Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes[J]. Compos. Part. A-Appl. S, 2007, 38(5): 1331
[10] Katsuyuki Wakabayashi, Cynthia Pierre, Dmitriy A.Dikin, et al, Thillaiyan Ramanathan, L. Catherine Brinson, John M. Torkelson. Polymer-graphitenanocomposites: Effective dispersion and major property enhancement via solid-state shear pulverization[J]. Macromolecules, 2008, 41(6): 1905
[11] Merlyn X. Pulikkathara, Oleksandr V. Kuznetsov, Valery N.Khabashesku. Sidewall covalent functionalization of single wall carbon nanotubes through reactions of fluoronanotubes with urea, guanidine, and thiourea[J]. Chem. Mater., 2008, 20(8): 2685
[12] Hu Y Z, Shen J F, Li N, et al.Amino-functionalization of graphene sheets and the fabrication of their nanocomposites[J]. Polym. Composite., 2010, 31(12): 1987
[13] Joel L. Stevens, Aaron Y.Huang, Peng H Q, et al. Sidewall aminofunctionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines[J]. Nano. Lett., 2003, 3(3): 331
[14] Shen J F, Huang W S, Wu L P, et al.Study on amino-functionalized multiwalled carbon nanotubes[J]. Mat. Sci. Eng. A-Struct, 2007, 464(1-2): 151
[15] Liao S H, Polan Liu, Minchien Hsiao, et al.One-Step Reduction and Functionalization of Graphene Oxide with Phosphorus-Based Compound to Produce Flame-Retardant Epoxy Nanocomposite[J]. Ind. Eng. Chem. Res., 2012, 51(12): 4573
[16] Li Y F, Zhu J J, Gao X H, et al.Preparation of polyaniline microemulsion and anticorrosion performance of its composite coatings with versatatefluoro-acrylate emulsion[J]. Chin. J. Mater. Res., 2016, 30(2): 131(李玉峰, 祝晶晶, 高晓辉等. 聚苯胺微乳液的制备及与叔氟丙烯酸酯乳液复合涂层的防腐性能[J]. 材料研究学报, 2016, 30(2): 131)
[17] Wang N, Zhang Y N, Luan H H, et al.Preparation and anti-corrosion properties of waterborne epoxy coatings containing organic microspheres[J]. Chin. J. Mater. Res., 2017, 31(1): 1(王娜, 张义男, 栾鸿赫等. 有机微球填充水性环氧涂层的制备及其防腐性能[J]. 材料研究学报, 2017, 31(1): 1)
[18] Cai K W, Zuo S X, Luo S P, et al.Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings[J]. RSC. Adv., 2016, 6(98): 95965
[19] Chi-Hao Chang, Tsao-Cheng Huang, Chih-Wei Peng, et al.Novel anticorrosion coatings prepared from polyaniline/graphene composites[J]. Carbon, 2012, 50(14): 5044
[20] Tsao-Cheng Huang, Yu-An Su, Tzu-Chun Yeh, et al.Advanced anticorrosive coatings prepared from electroactive epoxy-SiO2 hybrid nanocomposite materials[J]. Electrochim. Acta., 2011, 56(17): 6142
[21] Tzu-Chun Yeh, Tsao-Cheng Huang, Hsiu-Ying Huang, et al.Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyuria[J]. Polym. Chem., 2012, 3(8): 2209
[22] Tsao-Cheng Huang, Tzu-Chun Yeh, Hsiu-Ying Huang, et al.Electrochemical studies on aniline-pentamer-based electroactive polyimide coating: Corrosion protection and electrochromic properties[J]. Electrochim. Acta., 2011, 56(27): 10151
[23] Wang N, Zhang Y N, Chen J S, et al.Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings[J]. Prog. Org. Coat., 2017, 109: 126
[24] Zhang L, Huo D X, Liu D Z, et al.Antirust behavior of aluminum triphosphate in water-borne latex coating[J]. Corros. Sci. Prot. Techno., 2004, 16(5): 328(张丽, 霍东霞, 刘大壮等. 三聚磷酸铝在水性乳胶涂层中的防锈机理研究[J]. 腐蚀科学与防护技术, 2004, 16(5): 328)
[25] Shi Y Q, Qian X D, Zhou K Q,. CuO/graphene nanohybrids: preparation and enhancement on thermal stability and smoke suppression of polypropylene[J]. Ind. Eng. Chem. Res., 2013, 52(38): 13654
[26] Wang Zhou.The preparation and the characterization of epoxy/graphene oxide nanocomposites [D]. Beijing: Beijing University of Chemical Technology, 2010(王舟. 环氧树脂氧化石墨烯纳米复合材料的制备与表征[D]. 北京:北京化工大学, 2010)
[27] Jiang S D, Bai Z M, Tang G, et al.Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites[J]. Ind. Eng. Chem. Res., 2014, 53(16): 6708
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.