|
|
搅拌摩擦加工超细晶材料的组织和力学性能研究进展 |
陈菲菲1,2, 黄宏军1, 薛鹏2( ), 马宗义2 |
1 沈阳工业大学材料科学与工程学院 沈阳 110870 2 中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016 |
|
Research Progress on Microstructure and Mechanical Properties of Friction Stir Processed Ultrafine-grained Materials |
Feifei CHEN1,2, Hongjun HUANG1, Peng XUE2( ), Zongyi MA2 |
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
陈菲菲, 黄宏军, 薛鹏, 马宗义. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展[J]. 材料研究学报, 2018, 32(1): 1-11.
Feifei CHEN,
Hongjun HUANG,
Peng XUE,
Zongyi MA.
Research Progress on Microstructure and Mechanical Properties of Friction Stir Processed Ultrafine-grained Materials[J]. Chinese Journal of Materials Research, 2018, 32(1): 1-11.
[1] | Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45(2): 103 | [2] | Kang Z X, Peng Y H, Lai X M, et al.Research status and application prospect of ultrafine grained and/or nano-crystalline metallic materials processed by severe plastic deformation[J]. Chin. J. Nonf. Met., 2010, 20(4): 587(康志新, 彭勇辉, 赖晓明等. 剧烈塑性变形制备超细晶/纳米晶结构金属材料的研究现状和应用展望[J]. 中国有色金属学报, 2010, 20(4): 587) | [3] | Tao N R, Lu K.Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals[J]. J. Mater. Sci. Technol., 2007, 23(6): 771 | [4] | Torre F D, Lapovok R, Sandlin J, et al.Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes[J]. Acta Mater., 2004, 52(16): 4819 | [5] | Mughrabi H, H?pper H W.Cyclic deformation and fatigue properties of very fine-grained metals and alloys[J]. Inter. J. Fatigue, 2010, 32(9): 1413 | [6] | Vinogradov A, Maruyama M, Kaneko Y, et al.Effect of dislocation hardening on monotonic and cyclic strength of severely deformed copper[J]. Phil. Magazine, 2012, 92(6): 666 | [7] | Goto M, Han S Z, Euh K, et al.Formation of a high-cycle fatigue fracture surface and a crack growth mechanism of ultrafine-grained copper with different stages of microstructural evolution[J]. Acta Mater., 2010, 58(19): 6294 | [8] | Zhang Z J, An X H, Zhang P, et al.Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu-Zn alloy processed by equal-channel angular pressing[J]. Scripta Mater., 2013, 68(6): 389 | [9] | Xue P, Xiao B L, Ma Z Y.High tensile ductility via enhanced strain hardening in ultrafine-grained Cu[J]. Mater. Sci. Eng. A, 2012, 532: 106 | [10] | Khan F, Panigrahi S K.Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing[J]. Mater. Sci. Eng. A, 2016, 675: 338 | [11] | Xue P, Xiao B L, Ma Z Y.Achieving ultrafine-grained structure in a pure nickel by friction stir processing with additional cooling[J]. Mater. Design, 2014, 56: 848 | [12] | Chang C I, Du X H, Huang J C.Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing[J]. Scripta Mater., 2007, 57(3): 209 | [13] | Xue P, Xiao B L, Ma Z Y.Enhanced strength and ductility of friction stir processed Cu-Al alloys with abundant twin boundaries[J].Scripta Mater., 2013, 68(9): 751 | [14] | Kumar N, Mishra R S, Huskamp C S, et al.Critical grain size for change in deformation behavior in ultrafine grained Al-Mg-Sc alloy[J]. Scripta Mater., 2011, 64(6): 576 | [15] | Xue P, Ma Z Y, Komizo Y, et al.Achieving ultrafine-grained ferrite structure in friction stir processed weld metal[J]. Mater. Lett., 2016, 162: 161 | [16] | Su J Q, Nelson T W, Sterling C J.Friction stir processing of large-area bulk UFG aluminum alloys[J]. Scripta Mater., 2005, 52(2): 135 | [17] | Xue P, Xiao B L, Ma Z Y.Achieving large-area bulk ultrafine grained Cu via submerged multiple-pass friction stir processing[J].J. Mater. Sci. Technol., 2013, 29(12): 1111 | [18] | Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng. R, 2005, 50(1-2): 1 | [19] | Charit I, Mishra R S.Low temperature superplasticity in a friction-stir-processed ultrafine grained Al-Zn-Mg-Sc alloy[J]. Acta Mater., 2005, 53(15): 4211 | [20] | Ma Z Y.Friction stir processing technology: areview[J]. Metall. Mater. Trans. A, 2008, 39(3): 642 | [21] | Xue P, Zhang X X, Wu L H, et al.Research progress on friction stir welding and processing[J]. Acta Metall. Sin., 2016, 52(10): 1222(薛鹏, 张星星, 吴利辉等. 搅拌摩擦焊接与加工研究进展, 金属学报, 2016, 52(10): 1222) | [22] | Xue P, Wang B B, Chen F F, et al.Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Mater. Charact., 2016, 121: 187 | [23] | Huang C X, Yang H J, Wu S D, et al. Microstructural characterizations of Cu processed by ECAP from 4 to 24 passes [J]. Mater. Sci. Forum, 2008, 584-586: 333 | [24] | Xue P, Huang Z Y, Wang B B, et al.Intrinsic high cycle fatigue behavior of ultrafine grained pure Cu with stable structure[J]. Sci. Chin. Mater., 2016, 59(7): 531 | [25] | Ma Z Y, Liu F C, Mishra R S.Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing[J]. ActaMater., 2010, 58(14): 4693 | [26] | Qu S, An X H, Yang H J, et al.Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J]. ActaMater., 2009, 57(5): 1586 | [27] | Yang Q, Xiao B L, Wang D, et al.Formation of long-period stacking ordered phase only within grains in Mg-Gd-Y-Zn-Zr casting by friction stir processing[J]. J. Alloy. Compd., 2013, 581(5): 585 | [28] | Yang Q, Xiao B L, Zhang Q, et al.Exceptional high-strain-rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long-period stacking ordered phase[J]. Scripta Mater., 2013, 69(11-12): 801 | [29] | Wu L H, Xiao B L, Ni D R, et al.Achieving superior superplasticity from lamellar microstructure of a nugget in a friction-stir-welded Ti-6Al-4V joint[J]. Scripta Mater., 2015, 98: 44 | [30] | Xue P, Xiao B L, Wang W G, et al.Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel[J]. Mater. Sci. Eng. A, 2013, 575: 30 | [31] | Hsu C J, Kao P W, Ho N J.Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing[J]. Scripta Mater., 2005, 53(3): 341 | [32] | Hsu C J, Chang C Y, Kao P K, et al.Al-Al3Ti nano composites produced in situ by friction stir processing[J]. Acta Mater., 2006, 54(19): 5241 | [33] | Morisada Y, Fujii H, Nagaoka T, et al.Fullerene/A5083 composites fabricated by material flow during friction stir processing[J].Compos. A, 2007, 38(10): 2097 | [34] | Liu Z Y, Xiao B L, Wang W G, et al.Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling[J]. Carbon, 2013, 62(5): 35 | [35] | Liu Z Y, Xiao B L, Wang W G, et al.Tensile strength and electrical conductivity of carbon nanotube reinforced aluminun matrix composites fabricated by powder metallurgy combined with friction stir processing[J]. J. Mater. Sci. Technol., 2014, 30(7): 649 | [36] | Su J Q, Nelson T W, Sterling C J.Fabrication of bulk nanostructured materials by friction stir processing [A]. Symposium on Processing and Properties of Structural Materials, 2003 TMS Fall Meeting[C]. Chigago, 2003 | [37] | Wang B B, Chen F F, Liu F, et al.Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling[J]. J. Mater. Sci. Technol., 2017, 33(9): 1009 | [38] | Xue P, Xiao B L, Zhang Q, et al.Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling[J]. Scripta Mater., 2011, 64(11): 1051 | [39] | Wang Y P, Fu R D, Zhou X Y, et al.Enhanced mechanical properties of pure copper with a mixture microstructure of nanocrystalline and ultrafine grains[J]. Mater. Lett.,2016, 185: 546 | [40] | Wang Y M, Chen M W, Zhou F H, et al.High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419(6910): 912 | [41] | Xue P, Xiao B L, Ma Z Y.Microstructure and mechanical properties of friction stir processesd ultrafine-grained and nanostructured Cu-Al alloys[J]. Acta Metall. Sin., 2014, 50(2): 245(薛鹏, 肖伯律, 马宗义. 搅拌摩擦焊制备超细晶纳米晶铜铝合金的组织和性能特点[J]. 金属学报,2014, 50(2): 245) | [42] | Hu C M, Lai C M, Du X H, et al.Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process[J]. Scripta Mater. 2008, 59(11): 1163 | [43] | Wen J B, Yang Y L, Yang Y S, et al.Superplastic Application Technology [M]. Beijing: China Machine Press, 2005(文九巴, 杨蕴林, 杨永顺等. 超塑性应用技术 [M]. 北京: 机械工业出版社, 2005) | [44] | Khan F, Panigrahi S K.Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing[J]. Mater. Sci. Eng. A, 2016, 675: 338 | [45] | Ma Z Y, Mishra R S.Development of ultrafine-grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al-Mg-Zr[J]. Scripta Mater., 2005, 53(1): 75 | [46] | Liu F C, Ma Z Y.Contribution of grain boundary sliding in low-temperature superplasticity of ultrafined grained aluminum alloys[J]. Scripta Mater., 2010, 62(3): 125 | [47] | Gao X, Zhang Z, Wang K S, et al.Recent progress in research on Superplasticity of magnesium alloy by friction stir processing[J].Mater. Rev., 2014, 28(3): 138(高雪, 张郑, 王快社等. 搅拌摩擦加工镁合金超塑性最新研究进展[J]. 材料导报, 2014, 28(3): 138) | [48] | Liu F C, Ma Z Y.Achieving exceptionally high superplasticity at high strain rates in a micrograined Al-Mg-Sc alloy produced by friction stir processing[J]. Scripta Mater., 2008, 59(8): 882 | [49] | Liu F C, Ma Z Y.Low-temperature superplasticity of friction stir processed Al-Zn-Mg-Cu alloy[J]. Scripta Mater., 2008, 58(8): 667 | [50] | Liu F C, Ma Z Y, Chen L Q.Low-temperature superplasticity of Al-Mg-Sc alloy produced by friction stir processing[J]. Scripta Mater., 2009, 60(11): 968 | [51] | Wu L H, Xue P, Xiao B L, et al.Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6Al-4V joint[J]. Scripta Mater., 2016, 122: 26 | [52] | An X H, Wu S D, Wang Z G, et al.Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Mater., 2014, 74: 200 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|