Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (1): 1-11    DOI: 10.11901/1005.3093.2017.146
  综述 本期目录 | 过刊浏览 |
搅拌摩擦加工超细晶材料的组织和力学性能研究进展
陈菲菲1,2, 黄宏军1, 薛鹏2(), 马宗义2
1 沈阳工业大学材料科学与工程学院 沈阳 110870
2 中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
Research Progress on Microstructure and Mechanical Properties of Friction Stir Processed Ultrafine-grained Materials
Feifei CHEN1,2, Hongjun HUANG1, Peng XUE2(), Zongyi MA2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

陈菲菲, 黄宏军, 薛鹏, 马宗义. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展[J]. 材料研究学报, 2018, 32(1): 1-11.
Feifei CHEN, Hongjun HUANG, Peng XUE, Zongyi MA. Research Progress on Microstructure and Mechanical Properties of Friction Stir Processed Ultrafine-grained Materials[J]. Chinese Journal of Materials Research, 2018, 32(1): 1-11.

全文: PDF(9240 KB)   HTML
摘要: 

超细晶材料的力学性能明显提高,备受研究者的关注。但是,用传统的剧烈塑性变形工艺制备的超细晶通常处于高度的亚稳态,在拉伸及疲劳变形过程中极易发生局部变形,严重影响其力学性能。本文简述了一种搅拌摩擦加工制备超细晶材料的新型工艺,并将所制备的超细晶材料的微观组织和力学性能特点与传统超细晶材料对比,进行了总结和评述。

关键词 金属材料搅拌摩擦加工超细晶材料微观组织力学性能    
Abstract

Ultrafine-grained (UFG) materials have caught much attention due to their significantly enhanced mechanical properties. However, local deformation easily occurred during tensile and fatigue processes of the traditional UFG materials produced by severe plastic deformation methods due to their metastable microstructure, resulting in the greatly reduced mechanical properties. This paper introduced a new method of preparing the UFG materials -friction stir processing (FSP), and the microstructure and mechanical properties of FSP UFG materials were summarized and discussed compared with other UFG materials.

Key wordsmetallic materials    friction stir processing    ultrafine-grained material    microstructure    mechanical property
收稿日期: 2017-02-22     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51301178和51331008)
作者简介:

作者简介 陈菲菲,女,1989年生,硕士生

图1  搅拌摩擦加工过程和搅拌头示意图[19]
图2  7075Al单道次FSP后的宏观形貌以及图中1-3对应的加工区域的TEM微观形貌(图中BM为母材区,PZ为加工区)[16]
图3  ECAP和FSP超细晶纯铜的典型EBSD形貌和TEM形貌[23, 24]
图4  超细晶铜铝合金的晶界取向差分布图[13, 26]
图5  FSP超细晶Mg-Gd-Y-Zn-Zr合金和低碳钢的微观组织[27, 30]
图6  FSP超细晶Al2Cu-Al复合材料的微观组织[31]
图7  FSP超细晶纯铜和Cu-Al合金的拉伸曲线和性能对比[9, 13]
图8  FSP超细晶Al2O3-Al复合材料和ECAP超细晶纯铝的工程应力-工程应变曲线和真应力-真应变曲线(A1-A3为FSP超细晶Al2O3-Al复合材料,P1-P3为ECAP纯铝)[42]
图9  用多道次FSP制备的大面积超细晶纯铜的硬度分布和拉伸性能[16]
图10  FSP超细晶Al-4Mg-1Zr合金175℃时的应力-应变曲线[45]
图11  FSP超细晶Mg-Gd-Y-Zn-Zr合金超塑变形后的形貌[28]
图12  SPD超细晶纯铜疲劳后的表面形貌、典型位错组态、超细晶纯铜的疲劳应力-寿命(S-N)曲线以及 FSP超细晶纯铜的典型表面损伤形貌[24, 52]
[1] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45(2): 103
[2] Kang Z X, Peng Y H, Lai X M, et al.Research status and application prospect of ultrafine grained and/or nano-crystalline metallic materials processed by severe plastic deformation[J]. Chin. J. Nonf. Met., 2010, 20(4): 587(康志新, 彭勇辉, 赖晓明等. 剧烈塑性变形制备超细晶/纳米晶结构金属材料的研究现状和应用展望[J]. 中国有色金属学报, 2010, 20(4): 587)
[3] Tao N R, Lu K.Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals[J]. J. Mater. Sci. Technol., 2007, 23(6): 771
[4] Torre F D, Lapovok R, Sandlin J, et al.Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes[J]. Acta Mater., 2004, 52(16): 4819
[5] Mughrabi H, H?pper H W.Cyclic deformation and fatigue properties of very fine-grained metals and alloys[J]. Inter. J. Fatigue, 2010, 32(9): 1413
[6] Vinogradov A, Maruyama M, Kaneko Y, et al.Effect of dislocation hardening on monotonic and cyclic strength of severely deformed copper[J]. Phil. Magazine, 2012, 92(6): 666
[7] Goto M, Han S Z, Euh K, et al.Formation of a high-cycle fatigue fracture surface and a crack growth mechanism of ultrafine-grained copper with different stages of microstructural evolution[J]. Acta Mater., 2010, 58(19): 6294
[8] Zhang Z J, An X H, Zhang P, et al.Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu-Zn alloy processed by equal-channel angular pressing[J]. Scripta Mater., 2013, 68(6): 389
[9] Xue P, Xiao B L, Ma Z Y.High tensile ductility via enhanced strain hardening in ultrafine-grained Cu[J]. Mater. Sci. Eng. A, 2012, 532: 106
[10] Khan F, Panigrahi S K.Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing[J]. Mater. Sci. Eng. A, 2016, 675: 338
[11] Xue P, Xiao B L, Ma Z Y.Achieving ultrafine-grained structure in a pure nickel by friction stir processing with additional cooling[J]. Mater. Design, 2014, 56: 848
[12] Chang C I, Du X H, Huang J C.Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing[J]. Scripta Mater., 2007, 57(3): 209
[13] Xue P, Xiao B L, Ma Z Y.Enhanced strength and ductility of friction stir processed Cu-Al alloys with abundant twin boundaries[J].Scripta Mater., 2013, 68(9): 751
[14] Kumar N, Mishra R S, Huskamp C S, et al.Critical grain size for change in deformation behavior in ultrafine grained Al-Mg-Sc alloy[J]. Scripta Mater., 2011, 64(6): 576
[15] Xue P, Ma Z Y, Komizo Y, et al.Achieving ultrafine-grained ferrite structure in friction stir processed weld metal[J]. Mater. Lett., 2016, 162: 161
[16] Su J Q, Nelson T W, Sterling C J.Friction stir processing of large-area bulk UFG aluminum alloys[J]. Scripta Mater., 2005, 52(2): 135
[17] Xue P, Xiao B L, Ma Z Y.Achieving large-area bulk ultrafine grained Cu via submerged multiple-pass friction stir processing[J].J. Mater. Sci. Technol., 2013, 29(12): 1111
[18] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng. R, 2005, 50(1-2): 1
[19] Charit I, Mishra R S.Low temperature superplasticity in a friction-stir-processed ultrafine grained Al-Zn-Mg-Sc alloy[J]. Acta Mater., 2005, 53(15): 4211
[20] Ma Z Y.Friction stir processing technology: areview[J]. Metall. Mater. Trans. A, 2008, 39(3): 642
[21] Xue P, Zhang X X, Wu L H, et al.Research progress on friction stir welding and processing[J]. Acta Metall. Sin., 2016, 52(10): 1222(薛鹏, 张星星, 吴利辉等. 搅拌摩擦焊接与加工研究进展, 金属学报, 2016, 52(10): 1222)
[22] Xue P, Wang B B, Chen F F, et al.Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Mater. Charact., 2016, 121: 187
[23] Huang C X, Yang H J, Wu S D, et al. Microstructural characterizations of Cu processed by ECAP from 4 to 24 passes [J]. Mater. Sci. Forum, 2008, 584-586: 333
[24] Xue P, Huang Z Y, Wang B B, et al.Intrinsic high cycle fatigue behavior of ultrafine grained pure Cu with stable structure[J]. Sci. Chin. Mater., 2016, 59(7): 531
[25] Ma Z Y, Liu F C, Mishra R S.Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing[J]. ActaMater., 2010, 58(14): 4693
[26] Qu S, An X H, Yang H J, et al.Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J]. ActaMater., 2009, 57(5): 1586
[27] Yang Q, Xiao B L, Wang D, et al.Formation of long-period stacking ordered phase only within grains in Mg-Gd-Y-Zn-Zr casting by friction stir processing[J]. J. Alloy. Compd., 2013, 581(5): 585
[28] Yang Q, Xiao B L, Zhang Q, et al.Exceptional high-strain-rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long-period stacking ordered phase[J]. Scripta Mater., 2013, 69(11-12): 801
[29] Wu L H, Xiao B L, Ni D R, et al.Achieving superior superplasticity from lamellar microstructure of a nugget in a friction-stir-welded Ti-6Al-4V joint[J]. Scripta Mater., 2015, 98: 44
[30] Xue P, Xiao B L, Wang W G, et al.Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel[J]. Mater. Sci. Eng. A, 2013, 575: 30
[31] Hsu C J, Kao P W, Ho N J.Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing[J]. Scripta Mater., 2005, 53(3): 341
[32] Hsu C J, Chang C Y, Kao P K, et al.Al-Al3Ti nano composites produced in situ by friction stir processing[J]. Acta Mater., 2006, 54(19): 5241
[33] Morisada Y, Fujii H, Nagaoka T, et al.Fullerene/A5083 composites fabricated by material flow during friction stir processing[J].Compos. A, 2007, 38(10): 2097
[34] Liu Z Y, Xiao B L, Wang W G, et al.Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling[J]. Carbon, 2013, 62(5): 35
[35] Liu Z Y, Xiao B L, Wang W G, et al.Tensile strength and electrical conductivity of carbon nanotube reinforced aluminun matrix composites fabricated by powder metallurgy combined with friction stir processing[J]. J. Mater. Sci. Technol., 2014, 30(7): 649
[36] Su J Q, Nelson T W, Sterling C J.Fabrication of bulk nanostructured materials by friction stir processing [A]. Symposium on Processing and Properties of Structural Materials, 2003 TMS Fall Meeting[C]. Chigago, 2003
[37] Wang B B, Chen F F, Liu F, et al.Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling[J]. J. Mater. Sci. Technol., 2017, 33(9): 1009
[38] Xue P, Xiao B L, Zhang Q, et al.Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling[J]. Scripta Mater., 2011, 64(11): 1051
[39] Wang Y P, Fu R D, Zhou X Y, et al.Enhanced mechanical properties of pure copper with a mixture microstructure of nanocrystalline and ultrafine grains[J]. Mater. Lett.,2016, 185: 546
[40] Wang Y M, Chen M W, Zhou F H, et al.High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419(6910): 912
[41] Xue P, Xiao B L, Ma Z Y.Microstructure and mechanical properties of friction stir processesd ultrafine-grained and nanostructured Cu-Al alloys[J]. Acta Metall. Sin., 2014, 50(2): 245(薛鹏, 肖伯律, 马宗义. 搅拌摩擦焊制备超细晶纳米晶铜铝合金的组织和性能特点[J]. 金属学报,2014, 50(2): 245)
[42] Hu C M, Lai C M, Du X H, et al.Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process[J]. Scripta Mater. 2008, 59(11): 1163
[43] Wen J B, Yang Y L, Yang Y S, et al.Superplastic Application Technology [M]. Beijing: China Machine Press, 2005(文九巴, 杨蕴林, 杨永顺等. 超塑性应用技术 [M]. 北京: 机械工业出版社, 2005)
[44] Khan F, Panigrahi S K.Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing[J]. Mater. Sci. Eng. A, 2016, 675: 338
[45] Ma Z Y, Mishra R S.Development of ultrafine-grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al-Mg-Zr[J]. Scripta Mater., 2005, 53(1): 75
[46] Liu F C, Ma Z Y.Contribution of grain boundary sliding in low-temperature superplasticity of ultrafined grained aluminum alloys[J]. Scripta Mater., 2010, 62(3): 125
[47] Gao X, Zhang Z, Wang K S, et al.Recent progress in research on Superplasticity of magnesium alloy by friction stir processing[J].Mater. Rev., 2014, 28(3): 138(高雪, 张郑, 王快社等. 搅拌摩擦加工镁合金超塑性最新研究进展[J]. 材料导报, 2014, 28(3): 138)
[48] Liu F C, Ma Z Y.Achieving exceptionally high superplasticity at high strain rates in a micrograined Al-Mg-Sc alloy produced by friction stir processing[J]. Scripta Mater., 2008, 59(8): 882
[49] Liu F C, Ma Z Y.Low-temperature superplasticity of friction stir processed Al-Zn-Mg-Cu alloy[J]. Scripta Mater., 2008, 58(8): 667
[50] Liu F C, Ma Z Y, Chen L Q.Low-temperature superplasticity of Al-Mg-Sc alloy produced by friction stir processing[J]. Scripta Mater., 2009, 60(11): 968
[51] Wu L H, Xue P, Xiao B L, et al.Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6Al-4V joint[J]. Scripta Mater., 2016, 122: 26
[52] An X H, Wu S D, Wang Z G, et al.Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Mater., 2014, 74: 200
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.