Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (1): 12-16    DOI: 10.11901/1005.3093.2017.191
  研究论文 本期目录 | 过刊浏览 |
氧等离子体处理对国产芳III纤维表面性能的影响
王静1, 任航1, 陈平2(), 时晨1, 任荣1
1 沈阳航空航天大学航空航天工程学部 辽宁省先进聚合物基复合材料制备技术重点实验室 沈阳 110136
2 大连理工大学化工学院 三束材料改性教育部重点实验室 大连 116024
Surface Properties of Domesic Aramid Fiber III Modified by Oxygen Plasma Treatment
Jing WANG1, Hang REN1, Ping CHEN2(), Chen SHI1, Rong REN1
1 Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 State Key Laboratory of Material Surface Modification by Laser, Ion and Electronic Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

王静, 任航, 陈平, 时晨, 任荣. 氧等离子体处理对国产芳III纤维表面性能的影响[J]. 材料研究学报, 2018, 32(1): 12-16.
Jing WANG, Hang REN, Ping CHEN, Chen SHI, Rong REN. Surface Properties of Domesic Aramid Fiber III Modified by Oxygen Plasma Treatment[J]. Chinese Journal of Materials Research, 2018, 32(1): 12-16.

全文: PDF(1855 KB)   HTML
摘要: 

用氧气等离子体处理芳III纤维的表面,考察了等离子体处理前后芳III纤维表面性能的变化。使用红外光谱分析(FT-IR)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和动态接触角等手段研究了等离子体处理前后芳III纤维化学结构、表面元素组成、表面形貌、表面粗糙度和表面浸润性能的变化。结果表明,在保持纤维本体结构不变的前提下用氧等离子体处理在纤维的表面引入了含量分别为20.1%和8.1%的新极性官能团(C-O和COO)。经氧等离子体处理后纤维表面的沟槽和起伏增多,粗糙度增大。用等离子体处理使纤维表面的浸润性能明显提高,总表面自由能由49.9 mJ/m2提高到 67.1 mJ/m2

关键词 有机高分子材料等离子体表面浸润性能    
Abstract

Oxygen plasma treatment was used to modify the surface of aramid fiber III. The changes of fiber surface before and after oxygen plasma treatment was investigated in this paper. The surface chemical structure, element composition, surface morphology, surface roughness and surface wettability before and after oxygen plasma treatment were analyzed by FTIR, X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), atomic force microscopy (AFM) and dynamic contact angle analysis (DCAA), respectively. It was found that oxygen plasma treatment introduced some newly polar groups such as (C-O and O-C=O) to fiber surface, the content of which were 20.1% and 8.1%, respectively. After oxygen plasma treatment, the roughness of fiber surface increased and surface grooves and ups and downs were increased obviously. It was also shown that the fiber surface wettability was improved significantly by oxygen plasma treatment. The total surface free energy increased from 49.9 mJ/m2 to 67.1 mJ/m2.

Key wordspolymer material    plasma    surface    wettability
收稿日期: 2017-04-16     
ZTFLH:  B324  
基金资助:国家自然科学基金(51403129),国防基础科研重点项目(A35201XXXXX), 辽宁省大学生创新创业训练项目(S1610305、S1701011)
作者简介:

作者简介 王 静,女,1981年生,讲师,博士

图1  芳III纤维的化学结构式
图2  等离子体处理前后芳III纤维的红外谱图
Samples Element content/% O/C N/C
C/% O/% N/%
Untreated 77.1 16.4 6.5 0.21 0.08
Plasma-treated 65.1 20.4 14.5 0.31 0.22
表1  等离子体处理前后芳III纤维表面的元素
图3  等离子体处理前后芳III纤维的C1s谱图
Samples -C-C-
284.4 eV
-C-N-
285.4 eV
-C-O-
286.7 eV
-C=O
287.6 eV
-COO-
290.0 eV
Untreated 60.4 35.1 - 4.5 -
Plasma-treated 29.0 18.9 20.1 23.9 8.1
表2  等离子体处理前后芳III纤维的表面官能团变化
图4  等离子体处理前后芳III纤维的SEM照片
图5  等离子体处理前后芳III纤维的AFM照片
Samples Rq/nm Ra/nm
Untreated 46.5 42.3
Plasma-treated 60.9 51.2
表3  等离子体处理前后芳III纤维的表面粗糙度
Samples Contact angles
(θ) ± s.d. (°)
Surface free
energy (mJ/m2)
θaW θaDIM γp γd γs
Untreated 70.3 (1.2) 30.9 (2.4) 6.1 43.8 49.9
Plasma-treated 28.1 (0.9) 51.2 (0.7) 33.5 33.6 67.1
表4  等离子体处理前后芳III纤维表面与水和二碘甲烷的接触角及表面能
[1] Du S Y.Advanced composite materials and aerospace[J]. Journal of composite materials, 2007, 4(1): 1(杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 4(1): 1)
[2] Iman T, Abdolhossein F, Fathollah T B.Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures[J]. Mater. Des., 2014, 53: 152
[3] Hussain S, Yorucu C, Ahmed I.Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites[J]. Surf. Coat. Technol., 2014, 258: 458
[4] Liu K J, Yang Q, Zhu L H et al. Introduction of organic fiber[J]. Synthetic fiber, 2013, 42(1): 25(刘克杰, 杨琴, 朱华兰等.有机特种纤维介绍[J]. 合成纤维, 2013, 42(1): 25)
[5] Peng T, Cai R Q, Wang F D, et al.Effects of thermal-oxidative aging on structure and properties of aramid fiber III[J].Journal of Solid Rocket Technology, 2011, 34(2): 247(彭涛, 蔡仁钦, 王凤德等. 热氧老化对芳纶Ⅲ纤维结构与性能的影响[J]. 固体火箭技术, 2011, 34(2): 247)
[6] Ji J Y, Huang Z X, Su Q, et al. Study on O2 plasma surface modification of aramid fiber III [J]. Appl. Mech. Mater., 2012, 155-156: 936
[7] Zhang S H, He G Q, Liang G Z, et al.Comparison of F-12 aramid fiber with domestic armid fiber III on surface feature[J]. Appl. Surf. Sci., 2010, 256(7): 2104
[8] Wang B, Cui H, Zhou Y X, et al.Experimental investigation on properties of new domestic aramid fiber[J]. Journal of Solid Rocket Technology, 2006, 29(5): 377(王斌, 崔红, 周玉玺等. 新型国产芳纶Ⅲ纤维的性能实验研究[J].固体火箭技术, 2006, 29(5): 377)
[9] Xing L X, Liu L, Huang Y D, et al.Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation[J]. Composites Part B, 2015, 69: 50
[10] Cai R Q, Peng T, Wang F D, et al.Improvement of surface wettability and interfacial adhesion of poly-(p-phenylene terephthalamide) by incorporation of the polyamide benzimidazole segment[J]. Appl. Surf. Sci., 2011, 257: 9562
[11] Ebru B, Kutlay S, Mehmet S, et al.Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber-matrix for composite materials[J]. Composites Part B, 2013, 45(1): 565
[12] Peng T, Cai R Q, Chen C F, et al.Surface modification of para-aramid fiber by direct fluorination and its effect on the interface of aramid/epoxy composites[J]. J. Macromo. Sci., Phys., 2012, 51(3): 538
[13] Wang J, Chen P, Li H, et al.Surface modification of Aramid Fibers with Oxygen Plasma Treatment for Improving Interfacial Adhesion with Poly(phthalazinone ether sulfone ketone) Resin[J]. J. Appl. Polym. Sci., 2011, 121(5): 2804
[14] Mohamad W, Ahmed E S, Peter J H.Surface nanostructuring of kevlar fibers by atmospheric pressure plasma-induced graft polymerization for multifunctional protective clothing[J]. J. Polym. Sci., Part B: Polym. Phys., 2012, 50(16): 1165
[15] Song B, Meng L H, Huang Y D, et al.Influence of treatment time on plasma induced vapor phase grafting modification of PBO fiber surface[J]. Appl. Surf. Sci., 2012, 14(258): 5505
[16] Wang H H.Study on Structure and Properties of Aramid Fiber III [D]. Xi'an: Xi'an University ofEngineering, 2015(王红红. 芳纶III纤维的结构与性能研究 [D]. 西安: 西安工程大学, 2015)
[17] Wang J, Chen P, Li H, et al.Surface characteristic of poly (p-phenylene terephthalamide) fibers with oxygen plasma treatment[J]. Surf. Interface Anal., 2008, 40: 1299
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[5] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[6] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[7] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[10] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[11] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[12] 蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
[13] 赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生, 吴子平. 碳纳米管膜表面金属化用于高电流输出柔性锂离子电池[J]. 材料研究学报, 2022, 36(5): 373-380.
[14] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[15] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.