|
|
人工生物瓣膜血流动力学行为的有限元分析 |
刘晨1, 杨理践1( ), 张兴2 |
1 沈阳工业大学信息科学与工程学院 沈阳 110870 2 中国科学院金属研究所 沈阳 110016 |
|
Finite Element Analysis for Hemodynamic Behavior of Bioprosthetic Heart Valves |
Chen LIU1, Lijian YANG1( ), Xing ZHANG2 |
1 Shenyang University of Technology, Shenyang 110870, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
刘晨, 杨理践, 张兴. 人工生物瓣膜血流动力学行为的有限元分析[J]. 材料研究学报, 2018, 32(1): 51-57.
Chen LIU,
Lijian YANG,
Xing ZHANG.
Finite Element Analysis for Hemodynamic Behavior of Bioprosthetic Heart Valves[J]. Chinese Journal of Materials Research, 2018, 32(1): 51-57.
[1] | Lin W D, Askar S B.Present situation and the development of heart valve disease in adults[J]. Hosp. Pract., 2016, 22(4): 499(林伟德, 艾斯卡尔沙比提. 成人心脏瓣膜病的治疗现状与发展[J]. 岭南心血管病杂志, 2016, 22(4): 499) | [2] | Liang J S, Yin G L.Research progress of anticoagulant after artificial heart valve replacement[J]. Mil. Med. J. S. Chin., 2013, 27(3): 208(梁江水, 殷桂林. 人工心脏瓣膜置换术后抗凝研究进展[J]. 华南国防医学杂志, 2013, 27(3): 208) | [3] | Lis G J, Masztafiak J C, Kwiatek W M, et al.Distribution of selected elements in calcific human aortic valvesstudied by microscopy combined with SR-μXRF: Influence of lipids on progression of calcification[J]. Micron, 2014, 67: 141 | [4] | Butcher J T, Simmons C A, Warnock J N.Mechanobiology of the Aortic Heart Valve[J]. J. Heart Valve. Dis., 2008, 17(1): 62 | [5] | Yuan Q, Wang X W, Zhang C R.Geometry design theory and finite element analysis of bioprosthetic heart valve[J]. Chin. J. Tissue Eng. Res., 2007, 18(11): 3480(袁泉, 王晓伟, 张承瑞. 生物瓣膜几何设计理论及其有限元分析[J]. 中国组织工程研究与临床康复, 2007, 18(11): 3480) | [6] | Ma X J, Du Y W, Zhang L N.Fluid solid interaction analysis of bioprosthetic heart valve[J]. Chin. J. Med. Instrumentation, 2014, 38(5): 325(马雪洁, 杜亚伟, 张黎楠. 人工生物瓣膜流固耦合分析[J].中国医疗器械杂志, 2014, 38(5): 325) | [7] | Weinberg E J, Schoen F J, Mofrad M R K, et al. A computational model of aging and calcification in the aortic heart valve[J]. Plos One, 2009, 4(6): e5950 | [8] | Annerel S, Claessens T, Degroote J, et al.Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments[J]. Med. Eng. Phys. Med., 2014, 36(8): 1014 | [9] | Piatti F, Sturla F, Marom G, et al.Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach[J]. J. Biomech., 2015, 48(13): 3650 | [10] | Smuts A N, Blaine D C, Scheffer C, et al.Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve[J]. J. Mech. Behav. Biomed. Mater, 2011, 4(1): 85 | [11] | Kim H, Chandran K B, Sacks M S, et al.An experimentally derived stress resultant shell model for heart valve dynamic simulations[J]. Ann. Biomed. Eng., 2016, 35(1): 30 | [12] | Li J, Luo X Y, Kuang Z B.A nonlinear anisotropic model for porcine aortic heart valves[J]. J. Biomech., 2001, 34(10): 1279 | [13] | Marom G, Haj-Ali R, Rosenfeld M, et al.A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root[J].Med. Biol. Eng. Comput., 2012, 50(2): 173 | [14] | Astorino M, Gerbeau J F, Pantz O, et al.Fluid-structure interaction and multi-body contact: Application to the aortic valves[J]. Comput. Method. Appl. M., 2009, 198(45): 3603 | [15] | Halevi R, Hamdan A, Marom G, et al.Progressive aortic valve calcification: Three-dimensional visualization and biomechanical analysis[J]. J. Biomech., 2015, 48(3): 489 | [16] | Cheng A, Nguyen T C, Malinowski, et al. Undersized mitral annuloplasty inhibits left ventricular basal wall thickening but does not affect equatorial wall cardiac strains-meeting discussion[J]. J. Heart Valve. Dis., 2007, 16(4): 349 | [17] | Bouchareb R, Boulanger M C, Fournier, et al. Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism[J]. J. Mol. Cell Cardiol., 2014, 67: 49 | [18] | Mohammadi H, Bahramian F, Wan W.Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method[J]. Med. Eng. Phys., 2009, 31(9): 1110 | [19] | Kim H, Lu J, Sacks M S.Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model[J]. Ann. Biomed. Eng., 2007, 36(2): 262 | [20] | Kamenskya D, Hsub M, Schillingerc D.An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves[J]. Comput. Method. Appl. M., 2015, 284: 1005 | [21] | Pibarot P, Dumesnil J G, Cartier P C.Patient-prosthesis mismatch can be predicted at the time of operation[J]. Ann. Thorac. Surg., 2001, 71(5): 26 | [22] | Saikrishnan N, Kumar G, Sawaya F J.A review of diagnostic modalities and hemodynamics[J].Circulation, 2014, 129(2): 244 | [23] | Gabbay S, McQueen D M, Yellin E L. In vitro hydrodynamic comparison of mitral valve prostheses at high flow rates[J]. J. Thorac. Cardiov. Sur., 1978, 76(6): 771 | [24] | Gillinov A M, Blackstone E H, Rodriguez L L.Prosthesis-patient size: Measurement and clinical implications[J]. J. Thorac. Cardiov. Sur., 2003, 126(2): 313 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|