Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (1): 51-57    DOI: 10.11901/1005.3093.2017.109
  研究论文 本期目录 | 过刊浏览 |
人工生物瓣膜血流动力学行为的有限元分析
刘晨1, 杨理践1(), 张兴2
1 沈阳工业大学信息科学与工程学院 沈阳 110870
2 中国科学院金属研究所 沈阳 110016
Finite Element Analysis for Hemodynamic Behavior of Bioprosthetic Heart Valves
Chen LIU1, Lijian YANG1(), Xing ZHANG2
1 Shenyang University of Technology, Shenyang 110870, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

刘晨, 杨理践, 张兴. 人工生物瓣膜血流动力学行为的有限元分析[J]. 材料研究学报, 2018, 32(1): 51-57.
Chen LIU, Lijian YANG, Xing ZHANG. Finite Element Analysis for Hemodynamic Behavior of Bioprosthetic Heart Valves[J]. Chinese Journal of Materials Research, 2018, 32(1): 51-57.

全文: PDF(3594 KB)   HTML
摘要: 

使用脉动工作站检测生物瓣膜在近似生理条件下的血流动力学特性,结合有限元分析研究了生物瓣膜在心动周期过程中的微观应力和应变情况,寻求一种快速评价人工心脏瓣膜结构—力学性能间关系的方法。结果表明,生物瓣膜(Edwards #2625)在体外脉动流检测条件下的平均跨瓣压差为10.8 mmHg、有效开口面积为2.0 cm2、返流百分比为8.4%,均符合ISO-5840国际检测标准。生物瓣膜有限元模拟结果揭示其在收缩期最大主应力达到425 kPa,应力集中在弯曲变形严重的腹部以及瓣叶缝合边;舒张期最大主应力为1.46 MPa,应力集中在瓣叶缝合边的两侧。在脉动检测的不同时间点,瓣膜有限元模型开口面积均与实验条件下样品的开口面积近似,证明了有限元模拟结果的可靠性。本文提出的体外脉动流检测实验与有限元仿真计算相结合的方法,为评价人工心脏瓣膜的结构—力学性能间关系提供一种高效可靠的途径。

关键词 有机高分子材料生物瓣膜血流动力学特性应力分布有限元分析脉动流检测    
Abstract

The hemodynamic property in physiological saline solution of bioprosthetic heart valve was measured under the physiological considition using a pulse duplicator, accordingly, based on the above measured data, the stress and strain distribution on heart valve leaflets was analized by means of finite element analysis (FEA) at the microscopic level over a cardiac cycle, so that to assess the relationships between the structure and mechanical properties of the bioprosthetic heart valve. The measured parameters of the bioprosthetic heart valve (Edwards #2625) are as follows: the mean transvalvular pressure ~10.8 mmHg, the effective opening area ~2.0 cm2 and the regurgitant fraction ~8.4%, which all meet the requirements of the ISO-5840 standard; The FE simulation results show that the maximum principal stresse was 425 kPa during the systolic phase, the major stress concentration was found on the belly and the suture edge of the leaflet, which underwent severe bending deformation. The maximum principal stresse was 1.46 MPa during the diastolic phase, and the major stress concentration was found on the two sides of the suture of the leaflet; The valvular open areas at different time points were close to those measured during experimental tests, indicating the relibility of the FEA method. Thus, the combination of the simulation test and and the finite element simulation calculation may be considered as an efficient and relible stratigy to evaluate the relationships between the structure and mechanical properties of bioprosthetic heat valve.

Key wordsorganic polymer materials    bioprosthetic heart valves    hemodynamic property    stress distribution    finite element analysis    pulsatile flow test
收稿日期: 2017-01-31     
ZTFLH:  R318.1  
基金资助:国家自然科学基金(31300788)
作者简介:

作者简介 刘 晨,女,1991年生,硕士生

Parameters Value
Radius of bases / mm 11
Valve height / mm 13.4
Commissural height / mm 3
Angle between open leaflet and vertical /(°) 3
Radius of the commissures / mm 11.5
表1  生物瓣膜的设计参数
图1  生物瓣的几何模型
Parameters Value
Plastic modulus 4 MPa
Poisson ratio 0.45
Density 1000 kg/m3
表2  生物瓣膜的材料属性
图2  边界设置示意图
图3  心动周期过程的生物瓣膜检测曲线
Parameters Exp. values Standard values
(Mounting diameter=21 mm)
Effective orifice area / cm2 Transvalvular pressure / mmHg 2.0
10.8
Equal or greater than 1.05
2-20
Regurgitant fraction / % 8.4 Equal or less than 10
表3  实验检测性能参数与ISO-5840标准数值的比较
图4  随时间变化的压差加载曲线
图5  心动周期过程最大主应力分布情况(MPa)
图6  心动周期过程位移分布情况(mm)
图7  收缩期和舒张期不同时间点瓣膜开口面积的脉动流实验和模拟仿真结果
[1] Lin W D, Askar S B.Present situation and the development of heart valve disease in adults[J]. Hosp. Pract., 2016, 22(4): 499(林伟德, 艾斯卡尔沙比提. 成人心脏瓣膜病的治疗现状与发展[J]. 岭南心血管病杂志, 2016, 22(4): 499)
[2] Liang J S, Yin G L.Research progress of anticoagulant after artificial heart valve replacement[J]. Mil. Med. J. S. Chin., 2013, 27(3): 208(梁江水, 殷桂林. 人工心脏瓣膜置换术后抗凝研究进展[J]. 华南国防医学杂志, 2013, 27(3): 208)
[3] Lis G J, Masztafiak J C, Kwiatek W M, et al.Distribution of selected elements in calcific human aortic valvesstudied by microscopy combined with SR-μXRF: Influence of lipids on progression of calcification[J]. Micron, 2014, 67: 141
[4] Butcher J T, Simmons C A, Warnock J N.Mechanobiology of the Aortic Heart Valve[J]. J. Heart Valve. Dis., 2008, 17(1): 62
[5] Yuan Q, Wang X W, Zhang C R.Geometry design theory and finite element analysis of bioprosthetic heart valve[J]. Chin. J. Tissue Eng. Res., 2007, 18(11): 3480(袁泉, 王晓伟, 张承瑞. 生物瓣膜几何设计理论及其有限元分析[J]. 中国组织工程研究与临床康复, 2007, 18(11): 3480)
[6] Ma X J, Du Y W, Zhang L N.Fluid solid interaction analysis of bioprosthetic heart valve[J]. Chin. J. Med. Instrumentation, 2014, 38(5): 325(马雪洁, 杜亚伟, 张黎楠. 人工生物瓣膜流固耦合分析[J].中国医疗器械杂志, 2014, 38(5): 325)
[7] Weinberg E J, Schoen F J, Mofrad M R K, et al. A computational model of aging and calcification in the aortic heart valve[J]. Plos One, 2009, 4(6): e5950
[8] Annerel S, Claessens T, Degroote J, et al.Validation of a numerical FSI simulation of an aortic BMHV by in vitro PIV experiments[J]. Med. Eng. Phys. Med., 2014, 36(8): 1014
[9] Piatti F, Sturla F, Marom G, et al.Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach[J]. J. Biomech., 2015, 48(13): 3650
[10] Smuts A N, Blaine D C, Scheffer C, et al.Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve[J]. J. Mech. Behav. Biomed. Mater, 2011, 4(1): 85
[11] Kim H, Chandran K B, Sacks M S, et al.An experimentally derived stress resultant shell model for heart valve dynamic simulations[J]. Ann. Biomed. Eng., 2016, 35(1): 30
[12] Li J, Luo X Y, Kuang Z B.A nonlinear anisotropic model for porcine aortic heart valves[J]. J. Biomech., 2001, 34(10): 1279
[13] Marom G, Haj-Ali R, Rosenfeld M, et al.A fluid-structure interaction model of the aortic valve with coaptation and compliant aortic root[J].Med. Biol. Eng. Comput., 2012, 50(2): 173
[14] Astorino M, Gerbeau J F, Pantz O, et al.Fluid-structure interaction and multi-body contact: Application to the aortic valves[J]. Comput. Method. Appl. M., 2009, 198(45): 3603
[15] Halevi R, Hamdan A, Marom G, et al.Progressive aortic valve calcification: Three-dimensional visualization and biomechanical analysis[J]. J. Biomech., 2015, 48(3): 489
[16] Cheng A, Nguyen T C, Malinowski, et al. Undersized mitral annuloplasty inhibits left ventricular basal wall thickening but does not affect equatorial wall cardiac strains-meeting discussion[J]. J. Heart Valve. Dis., 2007, 16(4): 349
[17] Bouchareb R, Boulanger M C, Fournier, et al. Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism[J]. J. Mol. Cell Cardiol., 2014, 67: 49
[18] Mohammadi H, Bahramian F, Wan W.Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method[J]. Med. Eng. Phys., 2009, 31(9): 1110
[19] Kim H, Lu J, Sacks M S.Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model[J]. Ann. Biomed. Eng., 2007, 36(2): 262
[20] Kamenskya D, Hsub M, Schillingerc D.An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves[J]. Comput. Method. Appl. M., 2015, 284: 1005
[21] Pibarot P, Dumesnil J G, Cartier P C.Patient-prosthesis mismatch can be predicted at the time of operation[J]. Ann. Thorac. Surg., 2001, 71(5): 26
[22] Saikrishnan N, Kumar G, Sawaya F J.A review of diagnostic modalities and hemodynamics[J].Circulation, 2014, 129(2): 244
[23] Gabbay S, McQueen D M, Yellin E L. In vitro hydrodynamic comparison of mitral valve prostheses at high flow rates[J]. J. Thorac. Cardiov. Sur., 1978, 76(6): 771
[24] Gillinov A M, Blackstone E H, Rodriguez L L.Prosthesis-patient size: Measurement and clinical implications[J]. J. Thorac. Cardiov. Sur., 2003, 126(2): 313
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.