Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (5): 359-368    DOI: 10.11901/1005.3093.2016.488
  论文 本期目录 | 过刊浏览 |
周期凝露和二氧化硫环境对7A04铝合金腐蚀行为的影响
周和荣(), 姚望, 刘鹏洋, 但加永
武汉科技大学材料与冶金学院 武汉 430081
Effect of Cyclic Condensation and Sulfur Dioxide on Corrosion Behavior of 7A04 Aluminum Alloy
Herong ZHOU(), Wang YAO, Pengyang LIU, Jiayong DAN
School of Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

周和荣, 姚望, 刘鹏洋, 但加永. 周期凝露和二氧化硫环境对7A04铝合金腐蚀行为的影响[J]. 材料研究学报, 2017, 31(5): 359-368.
Herong ZHOU, Wang YAO, Pengyang LIU, Jiayong DAN. Effect of Cyclic Condensation and Sulfur Dioxide on Corrosion Behavior of 7A04 Aluminum Alloy[J]. Chinese Journal of Materials Research, 2017, 31(5): 359-368.

全文: PDF(7983 KB)   HTML
摘要: 

使用扫描电镜、交流阻抗谱和扫描开尔文探针等手段研究了7A04铝合金在周期凝露和二氧化硫条件下的腐蚀行为和规律。结果表明,7A04铝合金在周期凝露和二氧化硫环境中的腐蚀主要是薄液膜下的大气腐蚀,随着时间的延长腐蚀产物不断增多,腐蚀失重的数值增大,腐蚀产物的形貌呈点状或团状,主要是氢氧化铝和硫酸铝水合物;腐蚀类型主要为点蚀,局部有轻微剥蚀;交流阻抗拟合数值显示,在试验的初期7A04铝合金的腐蚀速率急剧下降,后期逐渐趋于平缓;表面电位分布图谱显示,材料表面的腐蚀电位呈升高趋势,至240 h后趋于稳定,7A04铝合金的腐蚀溶解,与其组织和组成分布密切相关。

关键词 材料失效与保护周期凝露二氧化硫腐蚀7A04铝合金交流阻抗扫描开尔文探针    
Abstract

The corrosion behavior of Al-alloy 7A04 under the condition of alternating condensation cycle with sulfur dioxide for 8 h and dry cycle for 16 h has been investigated by SEM, electrochemical impedance spectroscopy (EIS) and scanning kelvin probe (SKP). The results show that the corrosion of 7A04 alloy in the sulfur dioxide containing environmental condition of condensation cycle seems to be is an atmospheric the corrosion under thin liquid layer, like atmosphere corrosion. The corrosion products increase with time. Mass loss value gradually adds. The results of surface observation show that corrosion product is in the shape or in clusters. Corrosion product is made up of alumina and aluminum sulfate hydrate. The corrosion morphology shows mainly pitting corrosion and slight erosion. EIS simulation results exhibit that the corrosion rate of 7A04 alloy decreases sharply at the initial stage and gradually levels off at the later stage. Surface potential distribution maps reveal that the corrosion potential increase with corrosion time and become stable after 240 h, and the local active dissolution is related to the zonal distribution of the intermetallic compounds.

Key wordsmaterials failure and protection    cyclic condensation    sulfur dioxide corrosion    7A04 aluminum alloy    electrochemical impedance spectroscopy    scanning kelvin probe
收稿日期: 2016-08-13     
基金资助:国家自然科学基金项目(50971048)和国家科技基础条件平台专题
作者简介:

作者简介 周和荣,男,1972年生,博士,高级工程师

Si Fe Cu Mn Mg Zn Ti Al
0.063 0.41 1.56 0.24 2.72 5.81 0.015 89.182
表1  7A04铝合金化学成分(质量分数,%)
图1  7A04铝合金的微观组织结构
Dot Si Fe Cu Mn Mg Zn O Cr Al
a 0.0 0.0 1.49 0.0 4.45 5.41 0.0 0.0 88.95
a1 4.53 19.87 3.05 4.92 0.0 1.22 0.0 1.93 64.49
a2 0.0 0.0 28.35 0.0 12.37 3.14 0.0 0.0 56.14
a3 22.64 0.0 0.0 0.0 11.46 2.90 12.79 0.0 49.21
表2  7A04铝合金中金属化合物的能谱分析
图2  7A04铝合金腐蚀失重数值与时间的关系
图3  7A04铝合金表面宏观腐蚀形貌变化
图4  7A04铝合金腐蚀不同时间后的表面SEM形貌
图5  7A04铝合金腐蚀不同时间表面腐蚀产物去除后的形貌
图6  7A04铝合金腐蚀试样的交流阻抗Nyquist图和bode图
图7  7A04铝合金材料表面的等效电路模型
图8  7A04铝合金在溶液中界面双电层参数变化
Time 2 h 6 h 24 h 72 h 144 h 240 h 360 h
Rs /Ωcm2 56.8 47.44 53.96 124.7 153.1 142.7 78.74
CF-1cm-2S-n1 1.273×10-5 2.972×10-5 6.484×10-5 1.829×10-4 9.547×10-5 1.882×10-4 1.835×10-4
n1 0.96 0.89 0.94 0.922 0.90 0.7977 0.812
Rct /Ωcm2 3826 6349 6900 5030 5438 7841 9684
L /Ωcm2 6.135×10-5
表3  7A04铝合金在溶液中EIS参数变化
图9  7A04铝合金在溶液中腐蚀不同时间后的扫描开尔文图谱
图10  周期凝露试验过程中每个循环的温度和湿度变化
[1] Li X G, Zhang D W, Liu Z Y, et al.Share corrosion data[J].Nature, 2015, 527: 441
[2] Dong C.F, Sheng H, An Y H, et al. Corrosion of 7A04 aluminum alloy under defected epoxy coating studied by localized electrochemical impedance spectroscopy[J]. Prog. Org. Coat., 2010, 67: 269
[3] Zhou H R, Ma J, Li X G, et al.Corrosion behaviour of 7A04 aluminium alloy deposited with sodium chloride in simulated environment[J]. Chin. J. Nonferrous. Met., 2009, 19(5): 974(周和荣, 马坚, 李晓刚等. 表面沉积氯化钠的7A04铝合金在模拟环境中的腐蚀行为[J]. 中国有色金属学报, 2009, 19(5): 974)
[4] Oesch S, faller M. Environmental effects on materials: the effect of the air pollutants SO2, NO2 and O3 on the corrosion of copper, zinc and aluminum. A short literature survey and results of laboratory exposures[J]. Corros. Sci., 1997, 39(9):1505
[5] Husnu G, Gozen B, Mine K.A morphological and electrochemical comparison of the corrosion process of aluminum alloys under simulated acid rain conditions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 509
[6] Han W,Wang Z Y,Yu G C, et al.Corrosion of aluminum in wet/dry environment containing SO2[J]. Chin. J. Nonferrous. Met., 2003, 13(3): 631(韩薇, 王振尧, 于国才等. 铝在含SO2湿润/干燥环境中的腐蚀规律[J]. 中国有色金属学报, 2003, 13(3): 631)
[7] Svensson J E, Johansson G.A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl, influence of SO2 and NO2[J]. Corros. Sci., 1993, 34(5): 721
[8] Zhou H R, Li X G, Dong C F, et al.The corrosion behaviors of aluminum alloys in simulated SO2 pollute atmosphere[J]. J. Aeronaut. Mater., 2008, 28(2): 39(周和荣, 李晓刚, 董超芳等. 铝合金在模拟SO2污染大气环境中的腐蚀行为研究[J]. 航空材料学报, 2008, 28(2): 39)
[9] Zhou H R, Ma J, Li X G, et al.Corrosion behaviors and relativity high strength alloy in different simulated SO2 environment. J. Chin. Soc. Corros. Prot., 2011, 31(6): 1(周和荣, 马坚, 李晓刚等. 高强铝合金在不同SO2模拟环境中的腐蚀行为及相关性研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 1)
[10] Graedel T E.Corrosion mechanisms for aluminum exposed to the heat atmosphere[J]. J. Electrochem. Soc., 1989, 136(4): 204c
[11] Zhou H R, Li X G, Ma J, et al.Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Mater. Sci. Eng. B, 2009, 162(1): 1
[12] Dias S A S, Lamaka S V, Nogueira C A, et al. Sol-gel coatings modified with zeolite fillers for active corrosion protection of AA2024[J]. Corros.Sci., 2012, 62:153
[13] Aline C, Denys M, Leandro B, et al.Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys[J]. Mater. Des., 2014, 53: 118
[14] Yadav A P, Katayama H, Noda K, et al.Effect of Al on the galvanic ability of Zn-Al coating under thin layer of electrolyte[J]. Electrochim. Acta, 2007, 52: 2411
[15] Davoodi A, Pana J, Leygraf C.Probing of local dissolution of Al alloys in chloride solutions by AFM and SECM[J]. Appl. Surf. Sci., 2006, 252: 5499
[16] Dan Z H, Takigawa S, Muto I, et al.Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminum alloys[J]. Corros.Sci., 2011, 53: 2006
[17] Wang Z Y, Ma T, Han W.Corrosion behavior of aluminum alloy LC4 in simulated pollute atmosphere[J]. J. Chin. Soc. Corros. Prot., 2005, 25(6): 321(王振尧, 马腾, 韩薇. LC4铝合金在模拟污染大气环境中的腐蚀行为[J].中国腐蚀与防护学报, 2005, 25(6): 321)
[18] Sun S Q, Zheng Q F, Li D F, et al.Long-term atmospheric corrosion behaviour of aluminium alloys 2024and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51: 719
[19] Nikolaos D A, Charis J D, Panagiotis S, et al.Accelerated corrosion exposure in ultra thin sheets of 2024 aircraft aluminium alloy for GLARE applications[J]. Corros. Sci., 2012, 55: 289
[20] Eimahdy G A, Nishikata A, Tsuru T.AC impedance study on corrosion of 55%Al-Zn alloy coated steel under thin electrolyte layers[J]. Corros. Sci., 2000, 42: 1509
[21] Eimutis J, Aloyzas S, Klaus J.Study of initial stages of Al-Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe and XPS[J]. Electrochem. Commun., 2003, 5: 154
[22] Eimutis J, Konstantinas L, Wolfram F.Study of initial stages of Al-Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe[J]. Corros. Sci., 2003, 45: 1939
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.