Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (4): 314-320    DOI: 10.11901/1005.3093.2016.417
  研究论文 本期目录 | 过刊浏览 |
蝌蚪型POSS嵌段共聚物的合成及其质子交换膜的性能
张杰1,2(), 陈芳3, 马晓燕3
1 黔南民族师范学院化学化工学院 都匀 558000
2 西京学院应用统计与理学系 西安 710123
3 西北工业大学理学院 西安 710129
Synthesis and Property of Proton Exchange Membrane Based on Tadpole-type POSS Block Copolymer
Jie ZHANG1,2(), Fang CHEN3, Xiaoyan MA3
1 School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities Duyun 558000, China
2 Department of Applied Statistics and Science, Xijing University, Xi'an 710123, China
3 School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710129, China
引用本文:

张杰, 陈芳, 马晓燕. 蝌蚪型POSS嵌段共聚物的合成及其质子交换膜的性能[J]. 材料研究学报, 2017, 31(4): 314-320.
Jie ZHANG, Fang CHEN, Xiaoyan MA. Synthesis and Property of Proton Exchange Membrane Based on Tadpole-type POSS Block Copolymer[J]. Chinese Journal of Materials Research, 2017, 31(4): 314-320.

全文: PDF(1517 KB)   HTML
摘要: 

以聚倍半硅氧烷(POSS)为引发剂,用原子转移自由基聚合方法(ATRP)合成聚甲基丙烯酸甲酯与聚苯乙烯嵌段共聚物(PMMA-b-PS)为臂的蝌蚪型POSS嵌段共聚物,并使用红外光谱、核磁共振及GPC等手段分析其结构。结果表明,合成的蝌蚪型POSS嵌段共聚物结构规整。以蝌蚪型POSS嵌段共聚物为基体制备质子交换膜,研究了离子交换容量、吸水率及溶胀率,质子传导率及热性能。结果表明,蝌蚪型POSS嵌段共聚物质子交换膜在高温具有较高的质子传导率、较高的初始热分解温度和耐高温性能。

关键词 有机高分子材料质子交换膜原子转移自由基聚合方法(ATRP)蝌蚪型嵌段共聚物聚倍半硅氧烷    
Abstract

Tadpoles-type POSS block copolymer with polystyrene block copolymer and polymethyl methacrylate as arms (PMMA-b-PS) was synthesized by atom transfer radical polymerization (ATRP) method with polysilsesquioxane (POSS) as the initiator and polystyrene block copolymer and polymethyl methacrylate as raw material, and then was characterized by means of FTIR, 1H NMR and GPC. The results show that the tadpoles-type POSS block copolymer was synthesized successfully. Proton exchange membrane based on the tadpoles-type POSS type block copolymer was prepared, of which the ion exchange capacity, water uptake and swelling rate, proton conductivity and thermal performance was as sessed . The results show that proton exchange membrane based on the tadpole-type POSS block copolymer has higher proton conductivity at high temperature as well as high initial decomposition temperature and high temperature resistant performance.

Key wordsorganic polymer materials    PEM    ATRP    tadpole shaped block copolymer    POSS
收稿日期: 2016-07-20     
ZTFLH:  O631.1+1  
基金资助:陕西省教育厅自然科学研究项目(16JK2240),黔南民族师范学院2016年度引进高层次人才研究专项项目(qnsyrc201615),黔南民族师范学院高分子材料功能化产学研基地(Qnsyk201604),西京学院2016校级大学生创新创业训练计划项目(127152016148)
作者简介:

作者简介 张 杰,男,1978年生,博士

图1  用ATRP法合成蝌蚪型POSS嵌段共聚物
图2  蝌蚪型POSS嵌段共聚物的红外光谱图
图3  蝌蚪型POSS嵌段共聚物的1H NMR
图4  蝌蚪型POSS嵌段共聚物的GPC 图谱
Samples Feed ratio(MMA:St) Mn PDI Block ratio(PMMA:PS)
POSS-PMMA-b-PSa 1:1 61267 1.54 317:273(1:0.86)
POSS-PMMA-b-PSb 1:2 94576 1.53 348:564(1:1.62)
POSS-PMMA-b-PSc 1:3 136333 1.59 382:932(1:2.44)
表1  蝌蚪型POSS嵌段共聚物的分子量和嵌段比
Samples Ionic exchange
capacity(meqg-1)
POSS-PMMA317-b-SPS273 4.24
POSS-PMMA348-b-SPS564 5.63
POSS-PMMA382-b-SPS932 7.42
表2  蝌蚪型POSS嵌段共聚物质子交换膜的离子交换容量
图5  质子交换膜在不同温度下的吸水率
图6  质子交换膜在不同温度下的水合数λ
图7  质子交换膜在厚度方向上的溶胀率
图8  质子交换膜在不同温度下的质子传导率
图9  质子传导率与水合数之间的关系
图10  POSS-PMMA-b-SPS质子交换膜的质子传递机理
图11  蝌蚪型POSS嵌段共聚物的TGA曲线
Samples Initial decomposition
temperature / ℃
Quality retention
at 600℃ / %
POSS-PMMA317-b-PS273 213.9 4.9
POSS-PMMA348-b-PS564 232.7 7.3
POSS-PMMA382-b-PS932 277.9 13.1
表3  蝌蚪型POSS嵌段共聚物的热性能
[1] Zhang J, Chen F, Ma X Y, et al.Sulfonated polymers containing polyhedral oligomeric silsesquioxane (POSS) core for high performance proton exchange membranes[J]. Int. J. Hydrogen. Energ., 2015, 40(22): 7135
[2] Zhang J, Chen F, Ma X Y, et al.Proton Exchange Membrane Based on the Star Shaped Block Copolymer with Well Connected Ionic Domain and Conductivity[J]. Chin. J. Mater. Res., 2015, 29(5): 337(张杰, 陈芳, 马晓燕等. 星型嵌段共聚物基连通离子相筹质子交换膜及其传导性能[J]. 材料研究学报, 2015, 29(5): 337)
[3] Zhang J, Chen F, Ma X Y, et al.Preparation and Properties of Graphene Oxide/Polyhedral Oligomeric Silsesquioxane Star Block Copolymer Blend Proton Exchange Membrane[J]. Acta. Mater. Compos. Sin., 2016, 33(1): 92(张杰, 陈芳, 马晓燕等. 氧化石墨烯笼型聚倍半硅氧烷星型嵌段共聚物复合质子交换膜的制备与性能[J]. 复合材料学报, 2016, 33(1): 92)
[4] Zhang J, Chen F, Ma X Y, et al.Property of POSS-(PMMA26-b-SPS156)8 Block Copolymer/PVDF Blend Proton Exchange Membrane[J]. Polymer. Mater. Sci. & Eng., 2015, 31(9): 63(张杰, 陈芳, 马晓燕等. 含笼型倍半硅氧烷星型嵌段共聚物/聚偏二氟乙烯复合质子交换膜的性能[J]. 高分子材料科学与工程, 2015, 31(9): 63)
[5] Kuo S W, Chang F C.POSS related polymer nanocomposites[J]. Prog. Poly. Sci., 2011, 36(12): 1649
[6] Zhang W, Müller A H E. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS)[J]. Prog. Poly. Sci., 2013, 38(8): 1121
[7] Liu L, Wang W P, Jie X X, et al.Atom Transfer Radical Polymerization and Themal Properties of a Star Shaped POSS/PMMA Composite[J]. Acta. Polym. Sin., 2010, 23(1): 10(刘磊, 王文平, 揭晓晓等. 星型POSS/PMMA 复合材料的ATRP合成及其热性能研究[J]. 高分子学报, 2010, 23(1): 10)
[8] Wysokowski M, Materna K, Walter J, et al.Solvothermal synthesis of hydrophobic chitinpolyhedral oligomeric silsesquioxane (POSS) nanocomposites[J]. Int. J. Biol. Macromol., 2015, 78(0): 224
[9] Li Z, Yang R.Flame retardancy, thermal and mechanical properties of sulfonate-containing polyhedral oligomeric silsesquioxane (S-POSS)/polycarbonate composites[J]. Polym. Degrad. Stabil., 2015, 116(0): 81
[10] Yu T, MA X X, Li Y Z, et. Synthesis of Tadpole POSS Acrylate Block Copolymer as well as Preparation and Performance of Honeycomb-patterned Films from the Block Copolymer[J]. Chin. J. Mater. Res., 2014, 28(1): 8(余韬, 马晓燕, 李毅卓等. 蝌蚪型POSS丙烯酸酯嵌段共聚物及其蜂窝状多孔膜的制备和性能[J]. 材料研究学报, 2014, 28(1): 8)
[11] Tamaki R, Tanaka Y, Asuncion M Z, et al.Octa (aminophenyl) silsesquioxane as a nanoconstruction site[J]. J. Am. Chem. Soc., 2001, 123(49): 12416
[12] Maeda Y.IR spectroscopic study on the hydration and the phase transition of poly (vinyl methyl ether) in water[J]. Langmuir, 2001, 17(5): 1737
[13] Dong J, Ozaki Y.FTIR and FT-Raman studies of partially miscible poly (methyl methacrylate)/poly (4-vinylphenol) blends in solid states[J]. Macromolecules, 1997, 30(2): 286
[14] O'Reilly J M, Mosher R. Conformational energies of stereoregular poly (methyl methacrylate) by Fourier transform infrared spectroscopy[J]. Macromolecules, 1981, 14(3): 602
[15] Sertchook H, Avnir D.Submicron silica/polystyrene composite particles prepared by a one-step sol-gel process[J]. Chem. Mater., 2003, 15(8): 1690
[16] Wang Y, Teng X, Wang J S, et al.Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core-shell nanoparticles[J]. Nano. Lett., 2003, 3(6): 789
[17] Vernon D R, Meng F, Dec S F, et al.Synthesis, characterization and conductivity measurements of hybrid membranes containing a mono-lacunary heteropolyacid for PEM fuel cell applications[J]. J. Power. Sources., 2005, 139(1-2): 141
[18] Jung H Y, Park J K.Blend membranes based on sulfonated poly(ether ether ketone) and poly(vinylidene fluoride) for high performance direct methanol fuel cell[J]. Electrochima. Acta., 2007, 52(26): 7464
[19] Anantaraman A V, Gardner C L.Studies on ion-exchange membranes, Part 1, Effect of humidity on the conductivity of Nafion[J], J. Electroanal. Chem., 1996, 414(2): 115
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.