Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (5): 348-354    DOI: 10.11901/1005.3093.2015.558
  本期目录 | 过刊浏览 |
不同钙源对地聚合物反应机制的影响研究*
郭晓潞1,2(), 施惠生1,2, 夏明2
1. 同济大学先进土木工程材料教育部重点实验室 上海 201804
2. 同济大学材料科学与工程学院 上海 201804
Effect of Different Calcium Resouces on Reaction Mechanism of Geopolymer
GUO Xiaolu1,2,**(), SHI Huisheng1,2, XIA Ming2
1. Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China
2. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
引用本文:

郭晓潞, 施惠生, 夏明. 不同钙源对地聚合物反应机制的影响研究*[J]. 材料研究学报, 2016, 30(5): 348-354.
Xiaolu GUO, Huisheng SHI, Ming XIA. Effect of Different Calcium Resouces on Reaction Mechanism of Geopolymer[J]. Chinese Journal of Materials Research, 2016, 30(5): 348-354.

全文: PDF(3072 KB)   HTML
摘要: 

在地聚合物体系中, 反应产物会随原材料化学组成与激发条件的不同产生巨大差异, 钙掺杂地聚合物的反应机理、产物组成与结构更为复杂。试验采用5种外加晶体钙源和2种非晶体外加钙源以不同比例与偏高岭土复掺制备地聚合物, 研究了外加钙源对地聚合物性能和反应机制的影响。研究表明: 外加钙源中Si、Al的溶出量与钙源的结构有关, Si和Al的溶出量之间存在很强的正相关性, 而Ca与Si、Al的溶出量之间不存在相关性。外加钙源会降低偏高龄土基地聚合物体系的抗压强度, 掺杂非晶体钙源地聚合物的抗压强度均大于掺杂晶体钙源的。外加钙源中Ca的溶出量与抗压强度之间存在负相关性。本研究为拓宽地聚合物原材料的来源和资源化利用含钙工业固体废弃物研制复合地聚合物提供了理论和试验依据。

关键词 无机非金属材料地聚合物偏高岭土粉煤灰矿渣    
Abstract

The reaction products of a system of geopolymer could be great different due to the variation of the chemical composition of raw materials and the activated conditions. In the system of geopolymer containing calcium, the reaction mechanism, composition of products, and their structures could be more complex. Metakaolin (MK)-based geopolymer was prepared from metakaolin with different amount of five kinds of crystal calcium resources and two kinds of non-crystal calcium sources. The effect of calcium resource on the performance and reaction mechanism of the geopolymer was then systematically studied. The result showed that the dissolution of Si and Al related to the structure of the calcium resources and had a strong positive correlation, but no clear relationship with Ca. The compressive strength of MK-based geopolymer could decrease by addition of calcium resources. The compressive strength of geopolymer with non-crystal calcium resource was higher than that with crystal one. The dessolved amount of calcium from the calcium resource had a negative connection with the compressive strength. It provided the theoretical and experimental base for broadening the raw material resources of geopolymer system, and for utilization of industrial solid wastes containing calcium.

Key wordsInorganic non-metallic materials    geopolymer    calcium    metakaolin    fly ash    slag
收稿日期: 2015-09-30     
ZTFLH:  TQ172  
基金资助:* 国家自然科学基金51478328资助
作者简介: 本文联系人: 郭晓潞
Composition Na2O MgO Al2O3 SiO2 K2O CaO Fe2O3 Others
Metakaolin(MK) 0.23 0.03 43.80 53.00 0.19 0.02 0.43 2.22
High-calcium fly ash (CFA) 1.28 1.85 22.00 50.30 3.42 11.30 7.10 2.74
Slag powder(SL) - 8.58 14.95 33.26 - 40.65 1.07 1.49
表1  偏高岭土、粉煤灰、矿渣粉的化学组成
Minerals Crystalline state Structure Ideal chemical composition Density/gcm-3 Mohs hardness
Wollastonite(WOL) crystal single stranded CaSiO3 2.9 5
Actinolite (ACT) crystal double strands Ca2(Mg,Fe)5Si8O22(OH)2 3.2 5.7
Vesuvianite (VES) crystal island structure Ca19Al11Mg2Si18O69(OH)9 3.4 6.5
Anorthite (ANO) crystal frame shaped structure CaAl2Si2O8 2.7 6.3
Prehnite (PRE) crystal layered Ca2Al2Si3O10(OH)2 2.9 6.3
表2  含钙硅酸盐矿物的基本性质
Minerals CaO SiO2 Al2O3 Fe2O3 MgO NaO K2O
Wollastonite (WOL) 48.7 48.4 0.02 0.13 0.32 0.01 0.20
Actinolite (ACT) 28.1 36.1 0.60 2.37 14.23 0.05 0.03
Vesuvianite (VES) 36.9 37.1 18.0 1.88 2.46 0.02 0.04
Anorthite (ANO) 24.5 35.7 22.0 0.61 0.45 0.03 0.07
Prehnite (PRE) 27.4 42.5 20.8 3.73 - 0.01 0.09
表3  含钙硅酸盐矿物的化学组成
Minerals Ca Si Al
Metakaolin (MK) 3.42 3159.00 3650.00
High-calcium fly ash (CFA) 8.12 1247.27 622.01
Slag powder (SL) 6.81 1012.59 511.77
Wollastonite (WOL) 164.25 727.86 3.13
Actinolite (ACT) 64.05 729.33 4.59
Vesuvianite (VES) 38.63 806.00 40.85
Anorthite (ANO) 11.66 1837.33 353.27
Prehnite (PRE) 40.79 1953.75 496.81
表4  钙源在NaOH溶液中溶解24 h后的Ca、Si、Al溶出浓度
Correlation r of Pearson Si-dissolution Al-dissolution
Si-dissolution 1 0.976
Al-dissolution 0.976 1
表5  三种具有框架结构的硅酸盐钙源的Si、Al溶出量的相关性分析
Correlation r of Pearson Ca-dissolution Si-dissolution Al-dissolution
Ca-dissolution 1 -0.472 -0.690
Si-dissolution -0.472 1 0.645
Al-dissolution -0.690 0.645 1
表6  外加钙源中Ca、Si、Al的溶出量的相关性分析
图1  外加钙源对MK基地聚合物抗压强度的影响
Correlation r
of Pearson
Compressive strength of 7 d Compressive strength of 28 d
20% (mass fraction) 40% (mass fraction) 20% (mass fraction) 40% (mass fraction)
Ca-dissolution -0.637 -0.739 -0.907 -0.898
表7  外加钙源Ca的24 h溶出量与抗压强度的相关性分析
图2  含钙地聚合物的XRD图谱
图3  Ca对地聚合反应的影响机制
1 C. K. Yip, J. S. J.Van Deventer, Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder, J. Mater. Sci., 38(18), 3851(2003)
2 C. K. Yip, G. C. Lukey, J. S. J.Dean, Effect of blast furnace slag addition on microstructure and properties of metakaolinite geopolymeric materials, Ceram. Trans., 153, 187(2004)
3 T. W. Cheng, J. P. Chiu, Fire-resistant geopolymer produced by granulated blast furnace slag, Minerals Engineering, 16(3), 205(2003)
4 S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, M. Gordillo, J. L. Provis, Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends, J. Mater. Sci., 46(16), 5477(2011)
5 S. A. Bernal, J. L. Provis, V. Rose, R.M. de Gutiérrez, High-resolution X-ray diffraction and fluorescence microscopy characterization of alkali-activated slag-metakaolin binders, J. Am. Ceram. Soc, 96(6), 1951(2013)
6 S. Alonso, A. Palomo, Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio, Mater. Lett., 47(1), 55(2001)
7 S. Alonso, A. Palomo, Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures, Cem. Concr. Res., 31(1), 25(2001)
8 M. L. Granizo, S. Alonso, M.T. Blanco-Varela, A. Palomo, Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction, J. Am. Ceram. Soc., 85(1), 225(2002)
9 C. K. Yip, J. L. Provis, G. C. Lukey, J. S. J.Van Deventer, Carbonate mineral addition to metakaolin-based geopolymers, Cem. Concr. Com., 30(10), 979(2008)
10 C. K.Yip, G. C. Lukey, J. S. J.Van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cem. Concr. Res., 35(9), 1688(2005)
11 C. K. Yip, G. C. Lukey, J. L. Provis, J. S. J.Van Deventer, Effect of calcium silicate sources on geopolymerisation, Cem. Concr. Res., 38(4), 554(2008)
12 J. L. Provis, J. S. J.Van Deventer, Geopolymerisation kinetics. 2. Reaction kinetic modeling, Chemical Engineering Science, 62(9), 2318(2007)
13 J. S. J.Van Deventer, J. L. Provis, P. Duxson, G. C. Lukey, Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater., 139(3), 506(2007)
14 H. Xu, J. S. J.Van Deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, 59(3), 247(2000)
15 H. Xu, J. S.J. van Deventer, Effect of source materials on geopolymerization, Industrial and Engineering Chemistry Research, 42(8), 1698(2003)
16 E. H. Oelkers, J. Schott, J. L. Devidal, The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions, Geochim. Cosmochim. Acta., 58(9), 2011(1994)
17 S. V. Golubev, O. S. Pokrovsky, J. Schott, Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25 oC, Chem. Geolo., 217(3), 227(2005)
18 P. Duxson, J. L. Provis, Designing precursors for geopolymer cements, J. Am. Ceram. Soc, 91(12), 3864(2008)
19 Y. Xiao, A. C. Lasaga,Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H3O+) catalysis, Geochim. Cosmochim. Acta., 58(24), 5379(1994)
20 A. Allahverdi, M. Mahinroosta, Mechanical activation of chemically activated high phosphorous slag content cement, J. Powder Technol., 245, 182(2013)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.